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Abstract

A full Bayesian approach to vision requires consideration of potential interactions between all

the variables in both the scene and image. A complete model of the interactions, however, would

seem computationally intractable because of the large dimensionality of image measurements and

scene properties. As a consequence, both experimental studies and theoretical models of human

vision have relied on an assumption of modularity in which a particular scene property, such as

object depth, is estimated from a restricted set of image measurements, such as image size. The

computational problem is not hopeless, however, and can be surmounted by restricting the task

and taking advantage of the statistical structure of the problem. In a Bayesian context, modularity

falls out of the conditional independencies in the joint distribution of scenes and images p(S, I). By

conditioning the joint distribution with respect to particular inference tasks, further modularity is

possible while preserving optimal cue combination. We illustrate the problem of modularity and cue

combination for the perception of depth from two highly disparate cues, cast shadow position and

image size. While strong modularity would suggest ad hoc or no cue combination, we find that the

performance of human subjects is better predicted by near-optimal cue combination.
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1 Introduction

Human visual perception uses well over a dozen different cues to depth, including binocular and motion
parallax, pictorial cues, and the so-called physiological or proprioceptive cues (cf.[8]). Our understanding
of depth perception has largely developed through the experimental study of single cues in isolation.
Although, there have been a few experimental studies of cue combination pairs[6][19][25], testing all
possible cue combinations is impossible. Thus our understanding and modeling of how these cues
interact in everyday vision presents an empirical challenge: How can we test and quantitatively model
the interactions of multiple cues given the complexities of natural images? Our proposed solution is to
develop ideal observer models of optimal cue combination which provide the bases for specific testable
hypotheses of human perception. We, of course, expect departures from optimality for any real system;
but an ideal observer provides the baseline default model from which new models are created. This
strategy, at least in theory, makes the scientific problem tractable. But, one could argue, that all we have
done is to change the impossible empirical problem into a theoretically intractable one. Our primary
goal is to argue that optimal Bayesian theories of depth cue integration can be developed by exploiting
task dependency and the statistical structure of the depth estimation problem. We illustrate these ideas
with an analysis of depth estimation from image size and cast shadow position cues.

1.1 Why do Bayesian Cue Integration?

There is a long tradition of treating modularity as fundamental. Marr was “...moved to elevate (mod-
ularity) to a principle”[22]. Most ad hoc modularity schemes begin with several different image mea-
surements which are related to the scene variable to be estimated, and then assume that if the image
measurements are functionally separable, they should produce independent estimates. However, the
statistical independence of image measurements with respect a scene variable depends on the joint dis-
tribution, p(S, I), of scene and image variables. We will show that modularity is determined by the
statistical independence structure of the joint distribution.

The use of ad hoc modularity creates problems for cue combination[7, 19]. Given that we have several
estimates for an unknown quantity x, what do we do with them? In order of simplicity, we could:
discard the worst estimates as outliers; take a linear combination (often termed weak fusion); take linear
combinations modified by prior knowledge or other constraints; or, we could cook up more complicated
functions of the estimates potentially incorporating prior knowledge or other constraints.

Under particular conditions each of these fusion methods is optimal, but many situations arise in which
it is sub-optimal to form separate estimates at all. An important instance is when there are several
scene variables which depend on the same image measurements. In this case, optimal estimation must
treat all the image measurements and scene variables together or cooperatively. For instance, any image
measurement can be created by different combinations of surface geometry and reflectance, hence it is
in principle impossible to derive separate optimal estimators of surface geometry from different image
measurements[18].

In contrast, Bayesian inference insures consistent inferences and combination of cues based on the
confidence in the estimates.
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2 Probabilistic Approaches to Scene Estimation

2.1 Modeling p(S, I)

Probabilistic approaches to scene estimation require the specification of P (S, I), the joint probability
distribution of scene, S and image variables I. This joint distribution contains all the required informa-
tion for making optimal inferences and doing optimal encoding of the image information. For example,
marginalizing the joint distribution over S yields p(I) =

∫
S P (S, I)dS, which specifies the distribution

of images. A great deal of recent work on image coding has involved seeking compact representations
of p(I), typically using redundancy reduction principles[2, 27, 9, 23, 33, 30, 28, 29].

For the problem of inferring scene descriptions from image measurements, we use Bayes rule to write
the posterior probability as:

P (S|I) =
P (S, I)
P (I)

=
P (I|S)P (S)∫

S P (I|S)P (S)dS
(1)

Optimal inference uses p(S|I), but the form of the estimators depends on the task.

2.2 Task Dependency

Although modeling p(S, I) is theoretically possible, the cost of doing so for the entire ensemble of scenes
and images an observer could encounter is prohibitive. However, for most inference tasks we are only
interested in a small subset of the variables contained in the set S. Thus, for particular tasks, S can be
replaced by a subset of related variables (e.g. object motion, light source direction, etc.), and I by a small
set of required image measurements. Even considering the union of the set of tasks the visual system
performs, the number of variables required by this union will be orders of magnitude less (arguably a
different cardinality) than the variables required to describe p(S, I) completely. While it is clear that
restricting the domain of expertise of the visual system to a limited number of tasks appreciably relaxes
the computational burden, the complexity can be further reduced if we take advantage of the statistical
structure of p(S, I) restricted to the task.

We consider a task as specifying four things, the required set of scene variables Sr, the nuisance (e.g.
generic [11]) scene variables Sg, the scene variables which are presumed known Sf , and the decision to
be made. Each of the four components of a task plays a role in determining the structure of the optimal
inference computation. We show that Sr and Sf can be used to simplify the joint distribution through
independence relations, while Sg and the decision rule can make one choice of Sr simpler than another.

2.2.1 Factoring Distributions and Conditional Independence

When the joint distribution factors due to statistical independence:

p(S, I) = p(I|S1)p(I|S2)p(S1)p(S2),

then we can ignore the variables in S2 when making inferences on variables in the set S1. Thus, the
first simplification is to factor p(S, I) into two parts, one of which contains all the variables which are
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statistically independent of Sr and the other which contains all of the dependent variables, p(S, I) =
p(Iind|Sind)p(Idep|Sdep)p(Sind)p(Sdep).

In most cases, the nature of a task fixes some of the scene variables Sf . For instance, if an observer’s
task is to identify objects on an assembly line, then a number of relevant variables are typically fixed,
such as the viewing direction and distance, and the light source distance and direction. Restricting the
task domain to rigid bodies allow the observer to treat object sizes as time invariant. Note that most
constraints used to regularize vision problems can be expressed as fixing a set of scene variables. For
instance, in a world of polynomial surfaces, the constraint that the task only involves flat surfaces in
the world, can be rephrased as all non-linear polynomial coefficients are fixed at zero.

Since the variables in Sf are presumed known, we can condition p(Idep, Sdep) on Sf , p(Idep, Sdep|Sf ),
which increases the statistical independence of the variables. In general, conditioning produces indepen-
dence relations which can be exploited for cue combination and cooperative computation. We expect
the conditional distribution to further decompose into relevant and irrelevant scene variables.

Thus given the task, we can first factor p(S, I|Sf ) =
∏N
i=1 p(Si, I|Sf ). To do inference we need only

consider the factors in which the Si contain the variables in Sr. Let Sj denote the minimal set of
statistically dependent variables containing Sr. The variables in Sj excluding Sr are just the nuisance
variables Sg. Then, p(Sg, Sr, I|Sf ) contains all the information we need to perform the inference task,
and has automatically specified the task relevant vs. irrelevant variables. Thus the independence struc-
ture determines which variables should be involved in an inference computation. However, conditional
independence structure also determines which variables interact, which has consequences for data fusion
and cue combination.

The probabilistic structure of the joint probability distribution p(S, I) can be represented by a Bayes
Net[24, 12], which is simply a graphical model which expresses the conditional independences between
the variables. Using labels to represent variables and arrows to represent conditioning (with a → b
indicating b is conditioned on a2), independence can be represented by the absence of connections
between variables. Using these graphical models we can determine the interactions between variables
by inspection. For instance if two sets of variables are completely independent, then the graphs of the
variables are disjoint.

Because modularity is the ability to use different data cues to produce independent estimates of variable
x, what determines modularity in a Bayesian inference is whether or not the data are conditionally
independent given x. When this is true, we can produce separate likelihood functions for x, which can
be combined by multiplication, a property we call Bayesian modularity. Graphically, this requirement
is that the data are singly connected to the variable of interest. Figure 1 shows examples of a singly
connected net and a non-singly connected net. The non-singly connected net corresponds to the case in
which more than one scene variable depends on the data cues, which is exactly the case that calls for
cooperative computation.

2.2.2 Marginalization and Decision Rule

Bayesian decision theory provides a precise language to model the costs of errors determined by the
choice of visual task[32][5]. The risk R(Σ; I) of guessing Σ when the image measurement is I is defined

2In graph theory, a is called the parent of b
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d1 d2

d1  &   d2   singly connected

d1 d2

d1  &   d2    NOT singly connected

x x

Figure 1: Whether independent data measures are singly connected to the estimated variable x deter-
mines whether or not estimation modules can be created for x.
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as the expected loss:

R(Σ; I) =
∫
S
L(Σ, S)P (S | I)dS,

with respect to the posterior probability, P (S|I). The best interpretation of the image can then be
made by finding the Σ which minimizes the risk function. One possible loss function is a delta function
δ(Σ − S). In this case the risk becomes R(Σ; I) = −P (Σ | I), and then the best strategy is to pick
the most likely interpretation. This is called Maximum a posteriori estimation (MAP). A second kind
of loss function assumes that costs are constant over all guesses of a variable. This is equivalent to
marginalization of the posterior with respect to that variable. For simplicity, we will assume the former
or latter of these loss functions depending on whether the variable is needed or not. Thus, we estimate
the most probable relevant scene value (MAP estimation), while marginalizing with respect to the
irrelevant generic variables. While the statistical structure of the joint distribution determines which
variables interact, the choice of decision rule and marginalization variables determine the details of how
they interact.

3 Implications for Psychophysics

Does the visual system do Bayesian inference? If we assume the visual system is optimized for a
limited number of tasks, there are two kinds of predictions: characteristic successes and characteristic
failures. Characteristic successes denote cases when the visual system behaves optimally. One of the
key predictions is confidence-driven cue combination, in which observers use information based on its
reliability. Evidence for confidence driven use of texture information in judgements of surface orientation
has been shown in several studies[4, 16, 17, 31] by several authors. Another key prediction is that
consistent interpretations of related scene properties like surface geometry and shading are preferred
over inconsistent ones. Several lightness illusions rely on exactly this property [15, 1]. We should also
be able to predict which variables interact directly from the conditional independence relations.

Both Bayesian and non-Bayesian visual systems will show sub-optimal performance for tasks which
they are not designed for. However, a Bayesian system will show characteristic failures for a set of
related tasks which require optimal inference on different parametrizations of a set of scene variables.
For instance, a visual system which is optimized to compute the relative depths of objects will show
characteristic failures when asked to compute absolute depth.

The set of scene variable we do our inference on matter because Bayesian inference is not invariant to
reparametrizations. Thus if we perform optimal inference on one variable, we cannot just transform the
result to get optimal inference on another variable. This is due to the fact that transforming the variant
x of probability distribution dF = p(x)dx yields transformation will not yield the same inferences unless
g(y) is linear. This causes, for instance, binomial and beta distributed densities which are identical in
x space to be substantially different in y = 1/x space [10]. While this fact has been used to critique
Bayesian inference [10], it also has the interpretation that the kind of information contained about a
variable and its transform by one distribution is not the same as the information contained by another
distribution.

In the next section we perform a detailed analysis of Bayesian inference on a simple scene, to compare
several of these predictions to psychophysical data. In particular, we investigate whether we can predict
which variables interact, whether cue combination is confidence-driven, and how ideal performance
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varies given different parametrizations of the observer’s decision variable.

4 Estimating Depths from Image Size and Shadows

We illustrate the dependence of Bayesian cue combination on task demands and conditional indepen-
dences with a simple scene due to Kersten et al.[13]. The scene consists of a flat central square, a flat
checkerboard background and a light source. The square floats in front of the background, and the
light source is positioned so that the square casts a shadow onto the background. The observer judges
the depth of this square vs. the depth of another square (simulated to be physically identical in 3D)
presented at a different time. The viewing distance, and the orientation of the square and background
were kept fixed. In this simplified world the only cues to depth are the image size a of the square, and
the position of the cast shadow β (measured by the visual angle subtended by the direction of gaze and
the shadow position ). An example of the stimuli is shown in figure 2.

These cues are substantially different. The image size is determined by the depth of the square from the
observer and the physical size of the square. Image size information is most naturally used to estimate
the egocentric distance to the square. On the other hand the shadow position is determined by variables
in a different coordinate frame. Cast shadow position is determined by the allocentric distance of the
square from the background and the position of the light source. Thus to combine the shadow and
image size data, we must convert one of the variables into a common coordinate frame.

From the standpoint of traditional estimation, a strong case can be made not to combine the cues. When
we know that the sizes of the two squares are identical, then we can simply compare the likelihoods for
depth given the image size. When the likelihoods are singly peaked, the optimal decision simplifies to
comparing image sizes, and judging the larger image closer. Similarly, treating the shadow information
and assuming the light source direction is the same for both intervals, the square farther from the
background can be decided on the basis of which shadow position is farther from the square. Thus it
might seem more natural not to combine the cues,and instead make separate judgements of depth from
the cues.

In contrast, Bayesian inference requires choosing a common coordinate frame to combine the cues.
However, to combine the cues the size of the square and the light source direction can no longer be
neglected. We considered three possible common coordinate frames to do the inference. Each of these
leads to a different Bayes net and different optimal inference structure. For each of the three tasks,
however, the best way to judge the depths of the two squares is to compute decision variables consisting
of MAP depth estimates for both intervals and choose the smaller (closer to the observer) value.

4.1 Task 1: Estimating Relative Distance from Background (zr)

The geometric diagram in figure 3 defines all of the relevant variables for the task. One way of judging
the depths of the two squares is to compute the distance from the background. This leaves 4 unknowns,
α, s, z,& rb with only two data variables. If the observer scales the distance from the background z, and
the object size s by the distance from the observer to the background rb, then estimates of the relative
distance from the background can be made without having to deal with rb. By computing with the
scaled variables, we make our inferences more reliable because we have eliminated the uncertainty we
might have in rb.
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Figure 2: An illustration of the stimuli used in the experiment. Two movies depicting a square moving
in depth are sequentially shown to the observer. The image size of the square becomes larger and the
shadow moves away from the square with decreasing depth from the checkerboard background. The
image on the left illustrates the reference condition in which the image size was maximal and the shadow
displacement minimal. The right hand side shows the test condition which has variable image size and
shadow displacements. Subjects judged whether the reference or test square appeared closer at the end
of the movie in a two-alternative forced-choice method.
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Possible light 
source directions

Square

z

Shadow
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Background

Eye

α
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rb

s

Figure 3: Diagram illustrating the problem of inferring depth from image size and cast shadow position
in 1-D for the central square in front of a checkerboard background (see figure 2). There are three depth
variables, distance to the background rb, distance to the square rs, and the distance of the square from the
background z. The cast shadow position x depends both on the light source position α and z. We assume
that the observer can measure the angle subtended by the shadow β. The image size a (not shown) of the
object depends on the physical 3D size of the square s and the viewing distance rs.

While computing distance relative to an arbitrary background may seem contrived, the idea is similar
to computing depth relative to the fixation distance. From a psychological standpoint, object depth is
often evaluated relative to a background context. There are situations, like sitting at one’s desk, where
a fixed object (the desk) is familiar enough for it to make sense to compute distances relative to it. In
addition, many perceptual tasks do not require metric distance information (I can see that there is a
pen on my desk without calculating the distances from myself to each of the objects).

In this task the observer needs to estimate the relative distance zr = z/rb of the square from the
background checkerboard wall. Both the image size of the square and the shadow position are functions
of zr. The shadow position measurement β (in terms of visual angle), is a function of zr and light source
position α:

β = tan−1(zr tan(α)) + nβ (2)

The term nβ models the noise in the measurement. For simplicity we take this to be a Gaussian random
variable, so that β is Gaussian distributed. The likelihood function is given by:

p(β|zr, α) =
1√

2πσβ
exp(−(β − tan−1(zr tan(α))2

2σ2
β

) (3)
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a

zrsr

Relative Distance
from Background

a)
a

s rbz

Absolute Distance
from Background

c)

rss rb

a

Depth from Observer

b)

Figure 4: Bayes nets for the three tasks. a) Bayes net for relative distance to the background. This task
involves estimating object relations (world centered), and requires the least prior knowledge. b) Bayes
net for distance to observer. Notice that the use of the shadow information requires integrating across
two variables, hence the shadow cue should have more uncertainty for this task. c) Bayes net for metric
depth from the background. Estimating the distance from the background, z, is complicated by the image
size and shadow position measurements also being jointly dependent on the observer’s distance to the
background.
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The image size a is given by:

a =
s

rs
+ na =

s/rb
1− z/rb

+ na =
sr

1− zr
+ na

where sr is the actual size of the square relative to the distance to the background, and na is a term
which models the noise in the measurement. Since both sr and 1− zr are physically constrained to be
positive, we modeled the size measure noise as log normal. Then the likelihood for a is given by:

p(a|zr, sr) =
1√

2πσaa
exp(−

log( sr
1−zr )2

2σ2
a

) (4)

To estimate zr we compute p(zr|β, a). Assuming that the measurements of the image size a and the
shadow position β are independent, p(zr|β, a) can be written:

p(zr|{β}, {a}) =
p({β}|zr)p({a}|zr)p(zr)

p({β}, {a})
p(zr|{β}, {a}) ∝ p({β}|zr)p({a}|zr)p(zr)

=

(∫
α

N∏
i=1

p(βi|zr, α)p(α)dα

)(∫
sr

N∏
i=1

p(ai|zr, sr)p(sr)dsr
)
p(zr),

where N is the number of measurements. The Bayes net which corresponds to this inference is shown in
figure 4a. Note that this network is Bayes modular, which shows up in the factoring of the likelihoods
above.

4.2 Task 2: Estimating Depth to Square (rs)

As we interact with the world, there are instances when viewer-centered depth is required, such as
navigating and reaching to objects. Thus, it is reasonable to consider a second task in which one
estimates the distance from the observer to the squares rs. The Bayes net for this inference is shown in
figure 4b. In this case the shadow position must be converted to an observer coordinate frame. Using
rb = z + rs, we can write the shadow position measurement as:

β = tan−1(
(

1− rs
rb

)
tan(α)) + nβ (5)

The likelihood function is given by:

p(β|rs, rb, α) =
1√

2πσβ
exp(−

(β − tan−1(
(
1− rs

rb

)
tan(α))2

2σ2
β

) (6)

The image size a is given by:
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a =
s

rs
+ na

Hence the likelihood for a is given by:

p(a|rs, s) =
1√

2πσaa
exp(−

log( srs )2

2σ2
a

) (7)

To base the decision on rs, we compute p(rs|β, a):

p(rs|{β}, {a}) ∝ p({β}|rs)p({a}|rs)p(rs)

=

(∫
rb

∫
α

N∏
i=1

p(βi|rs, rb, α)p(α)p(rb)dα drb

)(∫
s

N∏
i=1

p(ai|rs, s)p(s)ds
)
p(rs) (8)

Note that this inference is Bayes modular, and that inference with the shadow cue requires dealing with
the additional unknown rb. Thus, for this task, the uncertainty in our shadow depth estimates increases
as compared with the relative distance task (Task 1).

4.3 Task 3: Estimating Absolute Distance to Background (z)

Finally, the observer could compute z, the absolute distance from the square to the background. This
requires conversion of the image size information into object coordinates. The computation also involves
a second unknown for both cues, the distance to the background rb. The Bayes net which corresponds
to this inference is shown in figure 4c. The measurements can be written in terms of z as:

β = tan−1(z tan(α)/rb) + nβ (9)

a =
s

rb − z
+ na.

The likelihood functions are:

p(β|z, rb, α) =
1√

2πσβ
exp(−(β − tan−1(z tan(α)/rb))2

2σ2
β

) (10)

p(a|z, rb, s) =
1√

2πσaa
exp(−

log( s
rb−z )2

2σ2
a

) (11)

To estimate z we compute p(z|β, a):
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p(z|{β}, {a}) ∝ p({β}, {a}|z)p(z)

=

(∫
rb

(∫
α

n∏
i=1

p(βi|z, rb, α)p(α)dα

)(∫
s

n∏
i=1

p(ai|z, rb, s)p(s)ds
)
p(rb) drb

)
p(z)(12)

Note that the posterior no longer factors into separate likelihoods for z, due to the joint marginalization
across rb. Thus, estimating absolute z is not Bayes modular. This has consequences for cue combination
that we explore below.

4.4 MAP Estimates

To derive formula for the MAP estimates of square depth for the three models, we found analytic
approximations to the required marginalization integrals using Laplace’s method [3, 11, 21]. In Laplace’s
method integrals of the form:

F (σ2) =
∫ b

a
f(x) exp(h(x)/σ2)dx (13)

can be well approximated in the low noise limit σ2 → 0. If the maximum c of h(x) is in (a, b) and
f(c) 6= 0,3 then by expanding h(x) in a second order Taylor series about c, the integral is asymptotically:

F (σ2) ∼
√

2πσ2√
|h′′c|

f(c) exp(h(c)/σ2) (14)

4.4.1 Task 1: MAP Estimate for zr (Relative z)

When the prior on α is uniform, the marginalization step can be approximately evaluated:∫
α

n∏
i=1

p(βi|zr, α)p(α)dα '
√

2zr
π(z2

r cos(β̂)2 + sin(β̂)2)
(15)

where β̂ is the mean of the N sample βs.

The maximum zr occurs at:
maxzr (p(β|zr)) = tan(β̂). (16)

For the size change cue, some knowledge of the relative size is crucial to compute the relative distance.
In the absence of a peaked prior, it is easy to show that the optimal estimate of zr is always zero. Thus
we marginalized with respect to a log normal prior on sr yielding:

p({a}|zr) =
1√

π(σ2
â + σ2

sr)â
exp(− log(â(1− zr)/µsr)2

2(σ2
â + σ2

sr)
) (17)

3For maxima at end points or vanishing f(c), the method yields slightly different approximations.
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where â is the geometric mean of the N samples, and σ2
â = σ2

a/N . The maximum zr with respect to
image size occurs at

maxzr (p({a}|zr)) = 1− µsr/â (18)

if µsr < â and at zero otherwise.

4.4.2 Task 2: MAP Estimate for rs

We find the optimal estimator for the shadow cue as we did previously, with the exception that we
need to marginalize over the additional unknown rb, the distance to the background. We assumed a log
normal prior on rb. This yields two asymptotic approximations, one for small uncertainty on the prior
σ2
rb

and one for large σ2
rb

. The small σ2
rb

approximation was used in our data analysis and is shown
below:

∫
rb

p({β}|rs, rb)p(rb)drb '
2(1− rs/µrb)

π((1− rs/µrb)2 cos(β̂)2 + sin(β̂)2)
(19)

The maximum rs occurs at:
maxrs (p({β}|rs)) = µrb(1− tan(β̂)). (20)

For the size change cue, marginalizing with respect to a log normal prior on s yields:

p(â|rs) =
1√

π(σ2
â + σ2

sr)â
exp(− log(ârs/µsr)2

2(σ2
â + σ2

sr)
). (21)

The maximum rs with respect to image size occurs at

maxzr (p({a}|zr)) = rs =
µs
â
. (22)

4.4.3 Task 3: MAP Estimate for z

In optimal estimation of z we cannot consider the shadow cue and image size cues separately. Instead
the joint distribution must be marginalized over rb. The asymptotic approximation to the posterior is:

p(z|{β}, {a}) ∝ µsz csc(β̂) sec(β̂)
√

2â
√
â2z2 + µ2

s(σ2
â + σ2

s) tan(β̂)2
exp

− (z − µs tan(β̂)

â(1−tan(β̂))
)2

2 â
2z2+µ2

s(σ
2
â
+σ2

s) tan(β̂)2

â2(1−tan(β̂))2

 p(z) (23)

The exact MAP estimator for this equation is complicated, but can be approximated by:

maxz (p(z|{β}, {a})) ' µs tan(β̂)
â(1− tan(β̂))

(24)

for the range of â and β̂ used in the experiments.
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Task Est from Shadow Est from Size Shadow Fisher Info Size Fisher Info

Relative z zr = tan(β̂) zr = 1− µsr
â

1√
2 tan(β̂)2

2â2

µ2
sr

(σ2
sr

+σ2
â
)

Dist. from Obs. rs = µrb(1− tan(β)) rs = µs
â

1
µ2
rb

tan(β̂)2

2â2

µ2
s(σ

2
s+σ2

â
)

Absolute z z = µs tan(β̂)

â(1−tan(β̂))

2â2(1−tan(β̂))4

(µ2
s tan(β̂)2

Table 1: Table of MAP estimates and Fisher information values for the three depth estimate tasks. For
the tasks which admit modular estimates, the estimates are shown separately for the shadow and image
size cues.
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4.5 Fisher Information

A lower bound on the variance of unbiased estimators is given by the reciprocal of the Fisher Information
[26]. The Fisher Information is given by:

I(x) = −N
∫
data

p(data|x)(∂2 log p(data|x)/∂x2)d(data) (25)

Recognizing the second derivative of the log of p(data|x) as an estimate of the inverse variance of the
Gaussian approximation to the likelihood function on x, we can interpret the Fisher Information as the
expected approximate variance of the likelihood function.

When independent likelihood functions for the depth variable can be derived (Bayesian modularity), the
minimum variance estimator can be expressed in terms of the individual MAP estimates and the Fisher
Information for each of the cues [4, 26]. Let ma denote the MAP estimate and Ia(x|ma) the Fisher
information for the image size cue, and mβ the MAP estimate and Iβ(x|mβ) the Fisher Information for
the shadow cue. Then the two cues are combined by a linear combination of the individual estimates,
weighted by their inverse variances:

mbest =
maIa(x|ma) +mβIβ(x|mβ)
Ia(x|ma) + Iβ(x|mβ)

. (26)

which is a specific prediction of a confidence-driven decision.

The lower bound on the variance of mbest is given by:

1
Ia(x|ma) + Iβ(x|mβ)

(27)

These estimates are also the expected MAP estimates for cues which are consistent (i.e. the likelihood
functions have similar maxima). We computed Fisher information for each of the independent depth
likelihood functions. The MAP estimates and Fisher information values are summarized in table 1.

Because rs and zr are related by a linear transformation we know the probability distributions should
transform gracefully. However, note that our MAP estimate for z is not what we would expect from
weak fusion, nor can it be produced by converting either the zrbest or the rsbest to z. Thus, in this case
strong fusion has resulted from marginalization.

In a Bayesian context, linear combination is only appropriate for Bayes nets with certain properties.
For Bayes nets which are modular and the data are consistent, a linear combination rule, inversely
weighted by the variances of the estimates is optimal. When the Bayes net is modular, we can compute
the estimates for linear changes of variables directly from the linear transform of the estimates, given
precise knowledge of any unknowns involved in the transform. Although the zr and rs estimates are
compatible in this way, it is important to point out that depth decisions based on these estimates can
substantially differ.

Inspecting the Fisher information functions, we can determine how the informativeness of the cues vary
as a function image size and shadow position. For all three estimation tasks, the informativeness of the
shadow cue decreases with increasing distance of the shadow from the square, while the informativeness
of the image size cue increases with image size. Thus shadow information is useful when an object is
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close to the object it casts its shadow on, while image size information is useful when an object is close
to the observer. Note that the information mirrors our expectation about the natural coordinate frames
for the two cues.

5 Human Performance

We performed a shadow and image size cue combination experiment to investigate whether or not
human observers make Bayesian-like use of both cues to estimate the depth of the square [20].

Computer graphics animations of a 2 cm by 2 cm target square moving in depth were created by a
displacement of the shadow from an initial position and by a size change of the square. Participants
viewed two animations presented sequentially (the reference and test images in randomized order) and
were asked to judge which of the two squares moved further in depth from the background. Responses
were recorded via a mouse button click. In the reference image, size change was maximal (128%) and
shadow displacement was minimal (0.5 cm). In the test image, size change ranged from 116% to 128%
(116%, 119%, 122%, 125%, 128%) and shadow displacement from 0.5 cm to 2.5 cm (0.5 cm, 1.0 cm, 1.5
cm, 2.0 cm, 2.5 cm). The viewing distance was 20 cm, and the simulated light source had an average α
of 22.5 deg.

Figures 5 & 6 show data for two naive subjects. The probability the observer chose the test as
appearing closer is plotted against the shadow displacement β. Each of the five curves corresponds to
a different test image size, shown in the legend box in the upper right panel. Discounting the shadow
information would result in constant curves as a function of β with all the probabilities less than 0.5
(because the test image sizes are all less than the reference image size), while discounting image size
information would result overlapping curves. For both subjects the curves are neither overlapping nor
flat, demonstrating that observers do use both kinds of information. To assess whether observers were
weighting the cues based on their reliability, we compared the human data to approximate performance
of the three cue combination models.

The performance of the three different estimators on the task was approximated using the estimator
and Fisher Information equations. The optimal decision rule for the task is to choose the interval with
the larger (smaller) MAP estimate of the distance from the background (from the observer). If we
approximate the MAP estimates µ as being Gaussian, then we can use the fact that the inverse of the
Fisher information is a lower bound on the variance of an unbiased estimator to write an approximate
upper bound on performance. The decision variable is then normally distributed with mean given by
the difference in map estimates, and the variance given by the sum of the reciprocals of the Fisher
informations. This performance approximation is quite coarse. However, simulations showed that the
networks had similar qualitative behavior. The performance of the three estimators is illustrated in the
upper panels with the model free parameters set by maximum likelihood fits of the models to the data.
The relative distance observer (Task 1) has two parameters, the sum of the image size variance and the
variance of the prior on square size, σ2

a + σ2
s , and the mean of the prior on square size µs. The distance

to square observer (Task 2) has both these free parameters and a third for the mean of the prior on rb.
The absolute distance observer (Task 3) has two free parameters µs and µrb . Note that the behavior
of the relative distance and the depth-from-observer models are qualitatively similar to both subjects’
data, with the depth-from-observer model being the better predictor for the data sets of both subjects.
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Figure 5: Data for one observer is shown in the bottom panel. The probability the observer chose the
test as appearing closer is plotted against the shadow displacement β. Each of the five curves corresponds
to a different test image size. Each probability is an estimate from 60 trials, and the error bars represent
the standard errors of the estimate. The reference stimulus is the same as the test stimulus with the
maximal image size and the minimal shadow displacement. The upper three panels show the probabilities
predicted by the approximate cue combination models for the three tasks. The model free parameters
were set by maximum likelihood fits to the data.
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Note that the data from the two subjects are qualitatively different4. Subject ARL shows an initial
increase in p(′closer′) followed by a decrease for the smaller image sizes. The depth-from-observer model
shows qualitatively similar behavior, when the prior expectation on the distance to the background µrb is
reduced by about 20% and the estimate of distance from image size has less uncertainty. The decreased
uncertainty in the image size cue coupled with the decreasing effectiveness of the shadow cue with β
cause the flattening of the curves and the downward trend. The downward trend can be briefly offset,
however, by decreasing the expected background distance, which increases the informativeness of the β
cue.

Although the absolute distance approximation is poorer than the other two, the qualitative behavior of
the model and the simulations least resembles the subjects’ data. This suggests that the visual system
may not be optimized to compute the metric distances between objects.

While the data are preliminary, the fact that the depth-from-observer model is more similar to the
subjects’ data is somewhat surprising. After all, we make perceptual decisions about the relative
distances between objects all the time. Further, although the perception of depth from shadows and
size is phenomenally quite strong [14], observers can readily see the animations as simulations on a flat
screen and hence unreachable. On the other hand, the visual system is highly adapted for reach. If the
visual system can only optimize for one depth variable, then distance from the observer is a sensible
one.

Given the computational cost of doing Bayes inference over traditional estimation (e.g. need to compute
whole posterior, not just estimate), why might the expense be worth it? One reason could be that
ensuring consistency is practical. Doing optimal cue combination with consistent cues allows very good
estimation of scene variables from data, even when the number of data samples are less than the number
of unknown scene variables and with very little prior knowledge. As an example, figure 7 shows the
marginal distributions for all of the scene variables in the depth-from-observer network given only two
image size and shadow position measurements, and flat priors on all the variables. Dashed lines mark
the true values of the scene variables. Notice that the MAP estimates are nearly correct for all four
variables.

6 Summary

We have argued that a fundamental goal of the visual system is to model the joint distribution p(I, S)
subject to task constraints. While modeling p(I, S) completely is intractable, a visual system which
which is only required to be optimal on a limited number of tasks can considerably simplify the problem
by exploiting conditional independence to reduce the number of required variables and the complexity of
the relations between variables. We contrasted Bayes inference and more traditional estimation schemes
which are driven by an early, and sometimes premature, commitment to modularity. We analyze in
detail Bayesian inference for a simple depth estimation task involving two disparate cues, image size and
cast shadow position, for three different coordinate frames. From the analysis we predict performance
on a simple depth discrimination task from the optimal cue combination in each coordinate frame. We
find that observers’ decisions are confidence-driven, in that they weight the information from the two
cues in accord with their informativeness.

4Kersten et al. [14] report size change and shadow displacement results in a different experiment which also showed
statistically significant differences between subjects in cue combination strategies.
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Figure 6: Data for a second observer is shown in the bottom panel. See figure 5 for details.
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