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Albstract 
Converging evidence has shown that human  object 

recognition depends o n  observers’ familiarity with ob- 
jects’ appearance. The  more similar the objects are, 
the stronger this dependence will be, and the more im- 
portant two-dimensional (2D) image information wall 
’be. The  degree t o  which 3D structural information 
is  used, however, remains a n  area of strong debate. 
Previously, we showed t,hat all models that allow rota- 
t ions in the image plant: of independent 2D templates 
could not  account f o r  h.uman performance in discrim- 
inating novel object views [3]. W e  now present re- 
sults f rom models of  gerseralazed radial basis funct ions 
(GRBF) ,  2D nearest nezghbor matching that allows 2D 
affine transformations, and a Bayesian statistical esti- 
mator that integrates over all possible 2D affine trans- 
formations.  The  performance of the  human  observers 
relative to  each of the models is  better for the novel 
views than f o r  the tempdate views, suggesting that hu- 
mans  generalize better t o  novel views f r o m  template 
views. The  Bayesian esiimator yields the optimal per- 
formance with 2D affine transformations and indepen- 
dent 2D templates. Therefore, n o  models of 2D a f i n e  
operations with independent 2D templates account for 
the human  performance. 

1 Introduction 
Object recognition is one of the most important 

functions in human vision. To understand human ob- 
ject recognition, it is es,sential to understand the na- 
ture of human object representations in memory. By 
definition, object recoginition is the matching of an 
object’s representation with an input object image. 
But, in any object recognition study, the nature of 
the object representation has to be inferred from the 
recognition performance, by taking into account the 
contribution from the image information. When eval- 
uating human performance, how can we separate the 
contributions of the image information from the rep- 
resentation? Ideal observer analysis provides a precise 
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computational tool to answer this question. The ideal 
observer’s recognition performance is restricted only 
by the available image information and is otherwise 
optimal, in the sense of statistical decision theory, ir- 
respective of how the model is implemented. A com- 
parison of human to ideal performance (in terms of 
ef ic iency)  serves to normalize performance with re- 
spect to the image information for the task. We con- 
sider the problem of viewpoint dependence in human 
recognition. 

A recent debate in human object recognition has fo- 
cused on the dependence of recognition performance 
on viewpoint [l, 51. Depending on the experimental 
conditions, an observer’s ability to recognize a famil- 
iar object from novel viewpoints is impaired to vary- 
ing degrees. A central assumption in the debate is the 
equivalence in viewpoint dependence between the rep- 
resentation in memory and recognition performance. 
In other words, the assumption is that a viewpoint de- 
pendent performance implies a viewpoint dependent 
representation, and that viewpoint independent per- 
formance implies a viewpoint independent represen- 
tation. However, given that any recognition perfor- 
mance depends on the input image information, which 
is necessarily viewpoint dependent, the viewpoint de- 
pendence of the performance is logically neither neces- 
sary nor sufficient for the viewpoint dependence of the 
representation. Image information has to be factored 
out first. 

In addition to accounting for image information, 
the ideal observer has the additional virtue of being 
implementation free. Consider the GRBF model [4], 
as compared with human object recognition (see be- 
low). The model stores a number of 2D templates 
{Ti} of a 3D object 0, and recognizes or rejects a 
stimulus image S by the following similarity measure 

where ci and ~7 are constants. The model’s perfor- 
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mance as a function of viewpoint parallels that of hu- 
man observers. This observation has led to the con- 
clusion that the human visual system may indeed, as 
does the model, use 2D stored views with GRBF in- 
terpolation to recognize 3D objects [2]. Such a conclu- 
sion, however, overlooks implementational constraints 
in the model, because the model's performance also 
depends on its implementations. Conceivably, a model 
with some 3D information of the objects can also 
mimic human performance, so long as it is appropri- 
ately implemented. There are typically too many pos- 
sible models that can produce the same pattern of 
results. 

In contrast, an ideal observer computes the opti- 
mal performance that is only limited by the stimulus 
information and the task. A constrained ideal is also 
limited by explicitly specified assumptions (e.g. a class 
of matching operations). It therefore yields the best 
possible performance among the class of models with 
the same stimulus input and assumptions. In this pa- 
per, we are particularly interested in constrained ideal 
observers that are restricted in functionally significant 
aspects (e.g., a 2D ideal observer that stores indepen- 
dent 2D templates and has access only to  2D affine 
transformations). The key idea is that a constrained 
ideal observer is the best in its class. So if humans out- 
perform this ideal observer, they must have used more 
than what is available to  the ideal. The conclusion 
that follows is strong: not only does the constrained 
ideal fail to account for human performance, but all 
implementations of it are also falsified as models of 
human recognition. 

A crucial question in object recognition is the ex- 
tent to which human observers model the geometric 
variation in images due to  the projection of a 3D ob- 
ject onto a 2D image. At one extreme, we have shown 
that any model that compares the image to  indepen- 
dent views (even if we allow for 2D rigid transforma- 
tions of the input image) is insufficient to account for 
human performance [3]. At the other extreme, it is 
unlikely that variation is modeled in terms of rigid 
transformation of a 3D object template in memory. A 
possible intermediate solution is to match the input 
image to  stored views, subject to  2D affine deforma- 
tions. This is reasonable because, 2D affine transfor- 
mations can capture a wider range of viewing condi- 
tions than 2D rigid transformations can. 

In this study, we test whether any model limited 
to  the independent comparison of 2D views, but with 
2D affine flexibility, is sufficient to  account for view- 
point dependence in human recognition. In the fol- 
lowing section, .we first define our experimental task, 

in which the computational models yield the provably 
best possible performance under their specified con- 
ditions. We then review the 2D ideal observer and 
GRBF model derived in [3], and the 2D affine nearest 
neighbor model in [6]. Our principal theoretical result 
is a closed-form solution of a Bayesian 21D affine ideal 
observer. We then compare human performance with 
the 2D affine ideal model, as well as the other three 
models. In particular, if humans can classify novel 
views of an object better than the 2D affine ideal, 
then our human observers must have used more infor- 
mation than that embodied by that ideal. 

2 The observers 
Let us first define the task. An observer looks at the 

2D images of a 3D wire frame object from a number 
of viewpoints. These images will be called templates 
{T,}. Then two distorted copies of the original 3D 
object are displayed. They are obtained by adding 
3D Gaussian positional noise (i.i.d.) to the vertices of 
the original object. One distorted object is called the 
target, whose Gaussian noise has a constant variance. 
The other is the distractor, whose noise has a larger 
variance. The two objects are displayed from the same 
viewpoint in parallel projection, which is either from 
one of the template views, or a novel view due to  3D 
rotation. The task is to choose the one that is more 
similar to  the original object. The observer's perfor- 
mance is measured by the variance (threshold) that 
gives rise to 75% correct performance. 

Assume that the models are restricted to  2D trans- 
formations of the image, and cannot reconstruct the 
3D structure of the object from its independent tem- 
plates {T,}. Assume also that the prior probability 
p(T,) is constant. Let us represent S and T, by their 
(s,y) vertex coordinates: ( X Y ) , where T 

x = (21,2,. . . ,Z") , Y  = (yl,y2,. . . , y") . (2) 

We assume that the correspondence between S and T, 
is solved up to  a reflection ambiguity, which is equiv- 
alent to  an additional template: 

T r = (  X' Y' )* ,  (3) 

X' = (Z",. . . , 22,s1) ,Y' = (y", . . . , y2,yl) . (4) 

P(SI0) = Q@IT%)P(T,). ( 5 )  

We still denote the template set as {T,}. Therefore, 

In what follows, we will compute p(SIT,)p(T,), 
with the assumption that 

S = .F (Tz) + N ( O , o I 2 n ) ,  (6) 
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where N is the Gaussian distribution, Ian the 2n x 2n 
identity matrix, and jc a 2D transformation. For the 
2D ideal observer, T is a rigid 2D rotation. For the 
GRBF model, .F assigns a linear coefficient to each 
template Ti, in addition to  a 2D rotation. For the 2D 
affine nearest neighbor model, .F represents the 2D 
affine transformation that minimizes 11s - Till2. For 
the 2D affine ideal observer, T represents all possible 
2D affine transformations applicable to Ti. 
2.1 The 2D ideal observer 

The templates are the original 2D images, their mir- 
ror reflections, and 2D rotations (in angle 4) in the im- 
age plane. Assume that the stimulus S is generated by 
adding Gaussian noise to a template, the probability 
p ( S I 0 )  is an integration over all templates [3]: 

(7) 
2.2 The GRBF :model 

ideal observer does. It,s training requires that 
The model has the same template set as the 2D 

Xi 12m d4ci(4)N(} / l : j  -Tt(4)ll,ff) = l , j =  

( 8 )  
with which { c i }  can he obtained optimally using sin- 
gular value decomposition. When a pair of new stim- 
uli {S} are presented, the optimal decision is to choose 
the one that is closer to the learned prototype, in other 
words, the one with a smaller value of 

2.3 The 2D affine nearest neighbor model 
It has been proved in [6] that the smallest Euclidean 

distance D(S,T) between S and T is, when T is al- 
lowed a 2D affine transformation, 

t r (S+S.  T ~ T )  
llT1I2 ' 

.D~(s ,T)  = i - S T 
S + --,T + - 

IPll IITlt' 
(10) 

where t r  stands for trace, and S+ = S T ( S S T ) - I .  The 
optimal strategy, therefore, is to choose the S that 
gives rise to the larger of C exp ( -D2(S ,  Ti)/2a2) , or 
the smaller of CD2(8,Ti). (Both measures will be 
used and the results €rom the better one will be re- 
ported.) 
2.4 

We now calculate the Bayesian probability by as- 
suming that the prior probability distribution of the 

The 2D affine ideal observer 

2D affine transformation, which is applied to the tem- 
plate Ti, 

obeys a Gaussian distribution N(X0, y&), where XO 
is the identity transformation 

Xo = ( a , b , c , d , t x , t , ) T  = ( l , O , O , l , O , O ) T .  (12) 

(13) Cp(S(Ti) = C dadbdcdddt,dt, s 

where C(n,a, y) is a function of n, 6, y; 

The free parameters are y and the number of 2D ro- 
tated copies for each Ti. 

Figure 1: Stimulus classes: Balls, Irregular, Symmetric, 
and V-Shaped. 

2.5 The human observers 
Three naive subjects were tested with four classes 

of objects: Balls, Irregular, Symmetric, and V-Shaped 
(Fig. 1). There were three objects in each class. For 
each object, 11 template views were learned by rotat- 
ing the object 60°/step, around the X- and Y-axis, 
respectively. The 2D images were generated by ortho- 
graphic projection, and viewed monocularly. During 
the test, the standard deviation of the Gaussian noise 
added to  the target object was ot = 0.254 cm. No 
feedback was provided. 

Because the image informatior, available to the hu- 
mans was more than what was available to  the models 
(shading and occlusion in addition to the (z,y) posi- 
tions of the vertices), both learned and novel views 
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were tested in a randomly interleaved fashion. There- 
fore, the strategy that humans used in the task for the 
learned and novel views should be the same. We pre- 
dict that if the humans used a 2D affine strategy, then 
their performance relative to  the 2D affine ideal ob- 
server should not be higher for the novel views than for 
the learned views. One reason to  use the four classes 
of objects with increasing structural regularity is that 

Symmetric vs. Irregular), which the 2D models cannot 
capture (the Only exception is the planar V-Shaped 
Objects, for which the 2D affine completely 
capture 3D rotations, and are therefore the “correct” 
models.). If human performance increases with the in- 
creasing structural regularity of the objects, this would 

g 

2 e ‘ 
, 

Balls lmgulsr Symelnc VShaped Balls lrwpilar Symmetric V-Shaped 
the structural regularity is a 3D property (e.gd3D 

Object Type Object Type 

Figure 2: The thresholds for the learned and novel views, 
respectively. The dashed line is the standard deviation 
of the ~~~~~i~~ noise added to the target, 

lend support for the hypothesis that humans have used 
3D information in the task. 
2.6 Measuring performance 

A stair-case procedure was used to  track the ob- 
servers’ performance at 75% correct level for the 
learned and novel views, respectively, 120 trials for 
the humans, and 2000 trials for each of the models. 
For the GRBF model, the standard deviation of the 
Gaussian function was also sampled to  search for the 
best result for the novel views for each of the 12 ob- 
jects, and the result for the learned views was obtained 
accordingly. Likewise, for the 2D affine ideal, the num- 
ber of 2D rotated copies of each template T, and the 
value y were both extensively sampled, and the best 
performance for the novel views was selected accord- 
ingly. The result for the learned views corresponding 
to  the same parameters was selected. This choice also 
makes it a conservative hypothesis test. 

3 Results 
Fig. 2 shows the threshold performance, i.e., the 

standard deviation of the Gaussidn noise added to  the 
distractor to maintain a 75% correct performance for 
the human observers and the models. 

We use statistical efficiency to  compare human to  
model performance. & is defined as the information 
used by humans relative to  the ideal observer: 

where d‘ is the discrimination index, (T is the threshold 
- (Tt is that added to  the target, and (Td to  the dis- 
tractor [3]. Fig. 3 shows the statistical efficiency of the 
human observers relative to  each of the four models. 

We note in Fig. 3 that, relative to  the affine ob- 
servers, the efficiency for the novel views are higher 
than that for the learned views, except for the planar 

I GRBFModel ’ I 

Object Type 

Balls Inopular Symnulds V-Shapd 

Object Type 

3w 
t2D Affine Nearest Neighbod 

;1 V-Shapd 

Object Type 

300 

Novel 

100 I 5 O l  
Object Type 

Figure 3: Statistical efficiencies of human observers rel- 
ative to the four models. 

V-Shaped objects. We are particularly interested in 
the Irregular and Symmetric objects in the 2D affine 
ideal case, in which the pairwise comparison between 
the learned and novel views across the six objects and 
three subjects yielded a significant difference (bino- 
mial, p < .05). This suggests that the 2D affine ideal 
observer cannot account for the human observers’ per- 
formance. We suggest therefore that 3D information 
was used by the human observers (e.g., 3D symme- 
try). This conclusion is supported in addition by the 
increasing efficiencies as the structural regularity in- 
creased from the Balls, Irregular, to  Symmetric ob- 
jects. 
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4 Conclusions 
Computational models of visual cognition are of- 

ten-subject to information theoretic as well as imple- 
mentational constraints. When a model's performance 
mimics that of humans, it is difficult to interpret which 
aspects of the model, if any, characterize the human 
visual system. For example, human object recogni- 
tion could be simulated by both a GRBF model and a 
model with partial 3D information of the object. The 
approach we are advocating here is that, instead of 
trying to mimic human performance by a computa- 
tional model, we design an implementation free model 
that yields the best possible performance under explic- 
itly specified computational constraints. This model 
serves as a rigorous benchmark, and if human ob- 
servers outperform it, we can conclude firmly that the 
humans must have used better computational strate- 
gies than the model can. We showed here that mod- 
els of independent 2D templates with 2D linear op- 
erations cannot accounk for the human performance, 
suggesting that our human observers may have used 
the templates to reconstruct a (crude) 3D structure 
of the object. This kind of strong conclusiop rests on 
ideal observer analysis. 
Appendix: 2D affine ideal observer 

In this section, we derive the 2D affine ideal ob- 
server formulation. We consider the case of only one 
template. Assume that the template T and the input 
stimulus image S are represented as: 

x& x; ... xk ) = ( xT ) , (19) .=( y& y; ... YG 

. * .  "a ) = ( c; ) .  s =  (3 ... 

YT 

(20) Ys 
A 2D affine transformation to  the template T is 

with {a,b,c,d,  t,,t,} E (-CO, 00). 

If we assume that the stimulus image S is ob- 
tained by first applying a 2D affine transformation to 
the template image T, and then adding independent 
Gaussian noise N(O,o12,) to the resultant image, we 
have 

p(SIT, A, T,) = p(lN = S - (A T + T,)). (22) 

Let us calculate S --(A T + T,) first. Without loss 
of generality, we assume that the template image T is 
centered at the origin, i.e., 

We now calculate the squared Euclidean distance of 
11s - (A T + Tr)1I2- More explicitly, the squared Eu- 
clidean distance is 

11 T. + ~ X T  + ~ Y T  - XS + 1 1 ~ ~  + CXT + ~ Y T  - YS [I2. 
(24) 

We now look at the first term, given Eqn. (23), we 
have 

[IT. + UXT + ~ Y T  - = (25) 

(27) 
- + II~XT + ~ Y T I I ~  (26) 

-2 (aXT . XS + bYT . XS) . 
The first term on the right side is 

nt: - 2t.Cxk + Xg = n[(t. - Z)2 + var(xs)],  (28) 

Z = C X & / ~ ,  V W ( X S )  = X$/n - (29) 
The last two terms on the right side are 

a2X$ + b2Y; 4- 2abX~.  YT- 
2 (aXT 'XS + bYT .xS). 

(30) 
(31) 

So the total squared distance is 

n ((t. - Z)2 + (tY - g ) 2  + var (2s + 9s)) (32) 

+XT2 (a2 + c2) + YT2 (b2 + d 2 )  (33) 
+2(ab + cd)XT * YT (34) 
-2 (aXT XS + bYT ' XS) (35) 
+2 (CXT ' YS + d y T  * YS). (36) 

We write 

Le tv ,=  ( (:). 
Completing the square, e.g., 

(43) 
(vX - K I ) ~  Q (vx - K i )  - KiTQKi,  (44) 

V, T Qvx - 2vXTQK1 + 
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gives 

where v: G v, - K1 and v: = vy - K z .  

Gaussian prior 

We assume that 

obeys a Gaussian probability distribution 

A reasonable assumption about XO is when the affine 
transformation is an identity transformation, with 

XoT = (1,0,0,1,0,0).  (50) 

For simplicity, we use this XO value from now on. The 
argument of the integral becomes proportional to  

n[(t, - 2)' + (ty - y12 +war (2s + ys)] (51) 

+ ( a  b ) Q (  : ) - 2 (  a b)QK1(52) 

+ (  c d ) Q (  : ) - 2 (  c d ) Q K 2 ( 5 3 )  

+ (54) 
Y2 

t: + ti + (U - 1)2 + b2 + c2 + ( d  - 1)2 

= (n+-y-2) t,-- ( n+y-2  n3 )2 
2 

+ (n +ye2) (Iy - *) + 2yW2 (56) 

(55) 

(57) 

+vZTQ'vZ + v;~Q'v; (58) 

- K ; ~ Q  ( ~ 0 - l  QK;* + n VUT (ZS) 

-K4TQ (Q')-' Q K f T  + n var  (ys) , 
(59) 

(60) 

Q' Q + Y - 2 ~ 2 ,  v* = - Q'-'QK*. (61) 

QK* = QK + yP2I2 E ( QKZ QK; ) , (62) 

x 1 1 da' db' dc' dd' dt; dtb (65) 
(27V2l3 

*2+-2  ) (69) 
( x s  + YS) + * 

202/n 
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