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Ideal Perceptual Observers for
Computation, Psychophysics and
Neural Networks

David C. Knill and Daniel Kersten

We do not see optical images in an optical space, but we
percerve the bodies round about us in their many and sensuous

qualities. Ernst Mach, 1897.

Introduction

"That our phenomenal perceptual world, or a part of it, is
composed of the properties of objects and surfaces arrayed
in the richness of three dimensions provides one of the
great puzzles in psychology: How are such properties per-
ceived when the information available to an organism
takes the form of a two-dimensional layout of light energy
impinging on the surface of the retina® A more specific
problem is that the variables describing surface properties
such as reflectance, transmittance, shape and illumination
are locally confounded in the perspective map to an image.
How, in the face of apparent ambiguity, does the human
visual system arrive at a stable and accurate percept of
scenes?
The accuracy of percepts in our normal behavioural
environment implies the existence of ecological con-
straints on the structure of scene attributes which serve to
remove some, if not all, of the ambiguity. Furthermore,
the visual system apparently takes advantage, ither impli-
citly or explicitly, of these constraints. The very fact of
perception implies the existence of some rudimentary
structure in the environment. The organization of the
enviroment into cohesive objects with surfaces imposes a
tremendous amount of structure, reducing by one the
dimensionality of the space needed to describe a scene
(taking us from a description of points in a volume to a
description of points on disjoint surfaces). There are other
strong constraints on the environment; object motions are
continuous and often rigid, scenes are illuminated by a
small number of light-emitting surfaces (often not visible),
and many more.

What are the constraints on environmental structure?
To what extent does the human visual system take advan-

tage of these constraints? Are these constraints enough to
make the apparently ‘ill posed” problem of visual percep-
tion, as it is often presented in computer vision (Poggio ef
al., 1985) work, well-posed? In this chapter, we will intro-
duce a probabilistic framework for understanding visual
perception which serves to organize inquiry into these
issues. The development is an extension of an earlier pro-
posal of a Bayesian model for ideal observers applied to the
perception of scene attributes (Kersten, 1990). it is also
similar in spirit to the general model for perception pro-
posed in Observer Mechanics (Bennett et al., 1989), though
our development differs in its emphasis on the compo-
nents of a Bayesian formulation of ideal observers.

A Probabilistic Approach to
Perception

Percepts are statistical inferences about the scene which an
observer is viewing. They are an observer’s best guess
about whatever characteristic of a scene are of interest to
that observer. Somewhat more formally, we say that the
pereept of a scene results from the selection of the most
likely scene to have given rise to an image based on a
conditional distribution, p(scene/image) (the probability of
a scene conditional on an image). The form of the distri-
bution is implicitly defined in the visual system of the
observer. i

At first reading, this may appear to be a strong claim
about the nature of perceptual processing. Note, however,
that the form of the distribution governing the statistical
inferences is defined by the processing characteristics of
the system. Such a probabilistic framework can therefore
accommodate a broad range of possible systems. In order
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to create a predictive model within the framework, one
must specify some of the characteristics of the conditional
distribution p(scene/image) embodied in an observer. Asan
example, consider Gibson’s hypothesis of direct percep-
tion. Within a probabilistic framework, this would be
rephrased as an hypothesis that the conditional distribu-
tion is a Dirac dela function supported only at one point
in an appropriate representational space.

What are the advantages of studying visual perception
within a probabilistic framework? First, it is a natural
framework for developing theories of competence for dif-
ferent perceptual tasks, and thus for measuring human
performance on these tasks. Secondly, an expansion of the
conditional distribution using Bayes’ rule isolates the
qualitatively different components of the problem of per-
ception and leads to an empirical programme of research
which deals with issues fundamental to different perspec-
tives on perception, including both ecological and infor-
mation processing perceptives. Both of these issues will be
clucidated in the following sections, in which the concept
of an ideal observer 1s defined and discussed.

Ideal Observers

Before defining the concept of an ideal observer, we will
need some notation to characterize the environment and
the information available to an observer for the perception
of the environment. Let S be a complete characterization
of a scene viewed by an observer. We consider S to be an
clement of a continuous stochastic ensemble Ag, with an
associated probability density function ps(S). A specifies
the environment of an observer. The ecological con-
straints on this environment are embodied in the density
function, ps(S). As an example, scenes with rigidly
moving objects are much more likely than scenes with
clastically deforming objects. This would be reflected in
the relative values of pg(.S) for the two different types of
scenes.

In general, humans perceive some subset and/or some
high level function of the complete scene attributes in S.
Let us therefore define S* as characterizing those aspects
of a scene which the visual system attempts to perceive. We
call §* the diorama — the term used for a three-dimensional
museum display such as one built out of small figurines,
papier mache landscape, miniature trees and bushes. S*
might contain descriptions of such scene attributes as rela-
uve surface reflectances, surface shape and illumination
direction. S* is given by a one-to-one map 7, S*=n(S),
and is a member of a stochastic ensemble Age (see
Fig.7.1). Ag« may be continuous, discrete or of mixed
type. For the sake of discussion, we will assume it to be
continuous. (One can accommodate discrete ensembles,
Age and A, by replacing the probability density func-
tions by probability mass functions, Ps(S*) and P*(I"),

Fig. 7.1 Schematic of the scene-to-diorama map, n : As— Ag*.
Often, n will be many-to-one, and its inverse, one-to-many, as
shown here

and the appropriate integrals by summations.) The prob-
ability density function associated with Age, ps+(S*), is
simply related to p(S) by

ps-(S")='f L ps(8)dS (7.1)
no(S")
where 77 ' (§*) is the subset of As whose elements map
under 7 to S*.

A number of different formulations are possible for
characterizing the information available to an observer.
One can describe the information potentially available at
each point in space prior to imaging. Leonardo da Vinci
recognized this possibility. After describing the principle
of pinhole projection, he said ‘.. .any object, ..., diffuses
itself in circles, and fills the surrounding air with infinite
images of itself. And is repeated, the whole everywhere,
and the whole in every smallest part’ (Da Vinci, 1970).
Gibson (1979) calls this an optic array, which he defines as
the bundle of light rays coming to each point in space. It
can be more formally defined using the ‘holoscopic’ func-
tion (Adelson and Bergen, 1990), H(Z, V., V), Ve, ¢, 0,1),
specifying the light level at wavelength / projected to the
point (¥, V,, V) from the direction in spherical coordi-
nates ¢ and 0 at time /. A more common characterization
of visual information is as a pair of idealized retinal images
(i.e. imaged through an ideal optical system, assuming no
diffraction or optical aberrations). We define each image as
a function, (4, @, 0, 1), specifying the light level at
wavelength 4 impinging on the idealized retina at a point
given by the spherical coordinates ¢ and 6 at time 1. The
retina is often approximated as being planar, in which case
the spherical coordinates ¢ and @ are replaced by rectan-
gular coordinates x and y.

Gibson’s formulation represents the information poten-
tially available to an observer, while the retinal image rep-
resents the information actually sampled by the observer.
The optic array is perhaps the appropriate representation
to use when considering aspects of perception related to
the dynamic interaction of observers with the environ-
ment; however, for consideration of other aspects of per-
ception (e.g. the case of a static observer), a representation
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Fig. 7.2 Schematic of the scene-to-image map, 7 : As—A,. n,
being a projectrve map, is many-to-one, and its inverse, one-to-
many, as shown here.

in terms of a dynamic two-dimensional image is often
more convenient. For the development of the ideal
observer, we will find it convenient to represent visual
information as an image, where we use the term image to
refer generically to the input to the visual system, be it a
static monocular image, a binocular pair of static images or
a sequence of images over time.

Each image results from the application of a projective
map, 7, toa scene, I = 71(S). Itis, therefore, an element of a
stochastic ensemble, A;, with an associated probability
density function, pA7) given by

m(l)='["' PSS (7.2)

where 77! (S) is the subset of Ag whose elements map
under 7 to 7 that is, the set of scenes which could have
given rise to an image under the assumed projective map
(see Fig. 7.2).

We define an ideal observer for a given environment to
an observer which selects as its estimate of the diorama,
the element S* S* & Ag., which maximizes the condi-
tional probability p(S*/7) (from this point on in the text,
we will not specify the subscript for probability density
functions where they are implied by the context). An
cexpansion of the conditional probability density function
using Bayes’ rule will help to elucidate the different com-
ponents of the ideal observer formulation. The conditional
probability is given by

PUIS*)p(S*)

S*/)=
e tl]) 73)

or, equivalently,
I~ () pU1S)p(S)dS
o) (7.4)

This definition of the ideal observer corresponds to what is
called in statistical estimation theory the maximum a-
posteriort (MAP) estimator, or, in the case that the dio-
rama S* is categorical, a Bayesian classifier (Duda and
Hart, 1973). The density function p(S*/) is referred to as
the posterior conditional probability density function.

We will find it conventent in the discussion that follows
to refer to Equation 7.4. The first term in the numerator,
p(1/5), 1s the conditional probability of obtaining an image
1 from a scene, S. For the case so far described, in which
the image information available to the observer is com-
pletely reliable (i.e. it has not been corrupted by noise),
P(1]S) serves the function of selecting those scenes which
could have given rise to an image. More formally,

HS* /)=

son ) 16 85ex™ (1) L
wI[S)= {0 otherwise @)
The second term in the numerator, p(.5), is the prior prob-
ability of a scene occurring in the observer’s environment.
As discussed above, p(S) embodies the ecological con-
straints on the observer’s environment. The denominator,
(1), 1s the prior probability of obtaining the image 7, and
is a constant which acts to normalize p(S*/1).

For specific problems in visual perception, one may find
that a higher-level representation of visual information is
convenient. We will refer to such a representation as the
sketch 7*. Formally, the sketch would be given by a map 7,

*=y(I)= 7(n(S)) (see Fig.7.3). The sketch /* may or
may not represent all the information available in the
image /. An example would be the optic flow of retinal
intensities as a consequence of motion. Another example
of a sketch is a discretely sampled, blurred image, such as
would be input to any robotic or human visual system. /*
is an element of a stochastic ensemble A+ with an assoc-
iated probability density function P(/*) given by

"= 7
(1% '[z '("u[" o SS)aSdr - (16)

An ideal observer having access to a sketch 7* would select
an estimate of the diorama S* so as to maximize the pos-
terior density, p(S*/7*). p(S*/I*) can be expanded using
Equations 7.3 and 7.4, replacing / with /*,

Noise

How does the formulation of the ideal observer change
when we consider the information available to it to be
corrupted by noise. For simplicity, let us assume that the
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Sketch
A,

Fig. 7.3 Schematic including the image-to-sketch map, y
Aj=Ape. g is often many-to-one, and its imverse, one-to-many,
as shown here

noise, N(4, ¢, 0, t) is combined with 7(S) through an
invertible operator €, with inverse & (note that the noise
is defined in the same representational space as the image).
The image is given by

=n(S)&N (7.7
The density function p(7/.S) can be simply related to the
noise process by

p11S)=p(N=1Sn(S)) (7.8)

The posterior conditional density p(S*//) becomes

(5en 157 PN = IS T(S)PS)dS
o) (7.9)

P(S*/H=
p(I) may be expanded to

phy=| pN=ISa(SHASHS  (7.10)
AS

As before, p(S*/7) can be easily modified to accommodate
the use of a sketch /*

The essential change in the formulation is that p(//S) is
now spread out over the scene space A, and is no longer
supported only on the subset 7~ (/). It still maintains
some of its characteristics as a selection function, as p(//.S)
will generally be concentrated around 1~ '(/). As the level
of noise increases, however, the selectivity of p(7/.5)
decreases, and the influence of the prior density function
p(S) on p(S/7) increases

Ideal Observers and Psychophysical
Investigations of Human Visual
Perception

A number of researchers have suggested the use of a Baye-
sian framework for problems in computer vision (Marro-
quin, 1985; Szeliski, 1990). The analysis of regularization
tehniques presented in the last section of the chapter is one
example of such an application. We may also organize
empirical psychophysical research into human visual per-
ception around the central concept of ideal observers. The
main research issues are organized according to the differ-
ent components of the ideal observer as expressed in the
Bayesian expansion of the conditional probability distri-
bution p(5*/I). These are:

1. The environment, specified as a stochastic scene
ensemble, A, with an associated probability density func-
tion, p(S). p(.S) embodies the ecological constraints on the
structure of the environment.

2. The functional goals of the observer. We have repre-
sented this as a scene-to-diorama map, 7, applied to a
complete scene description to obtain the scene attributes
of interest to the observer, the diorama.

3. The image formation process, in the form of a pro-
jective map 7 from scenes in the environment to images.
Noise may also be incorporated into the image formation
process.

The image formation process determines the conditional
distribution p(7/S), which serves as a selection function to
select that subset of A which could have given rise to an
image. We may also include the specification of a sketch,
given by a map, 7, applied to the raw image. Use of a
sketch is usually a matter of analytical convenience, but
may correspond to an carly neural processing of the visual
image.

Each of these components isolates for study some broad
aspect of the problem of visual perception. The following
sections outline the research questions related to each of
the three components. The notion of ideal observers sug-
gests two perspectives from which questions may be asked.
One perspective is to first attempt to understand ideal
observers for humans' normal living environment, and
then to compare human perception to that of the ideal
observer. The second perspective is to consider humans as
ideal observers in some environment, and to ask questions
about that environment. In either case, the Bayesian
framework leads to an empirical focus on the constraints
on scene interpretation, imposed cither by environmental
structure or by the image.
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The Environment

The two obvious questions to ask about the environment
and its relation with human visual perception are: “what is
P(S) for the environment in which humans live’ and ‘what
is p(S) for the environment for which humans arc ideal
observers?” Of course, one cannot hope to completely
specify the appropriate density functions, nor should that
necessarily be our goal. Even if one were able to write out
equations for the density functions, they might provide no
more insight into the structure of the environment than
the defining differential equations provide into the beha-
viour of a non-linear dynamical system. What can be done
is to characterize different aspects of the structure in the
environment, much as stochastic processes are character-
ized by their means, their correlation structure and so
forth. We will, therefore, rephrase the two questions given
above as follows.

What are the ecological constraints on the structure of
scenes in the normal lrving environment of humans?
Ecological constraints are of two types; nomothetic and
statistical. Nomothetic constraints are those which strictly
apply to each individual scene in an environment. Within
a probabilistic framework, statistical constraints reflect
tendencies in the environment whereas nomothetic con-
straints are laws that hold with probability one. As an
example of a nomothetic constraint, consider a representa-
tion of differentiable surfaces in terms of local surface
orientation. The local orientations must satisfy the condi-
tion that they be integrable; that is, integration of orienta-
tions along a closed path on the surface must result in no
change in depth. Another example of a nomothetic con-
straint is the fact that the sum of a surface’s reflectance and
transmittance coefficients is always less than or equal to 1.
Examples of possible statistical constraints are  that

changes in surface reflectance tend to be discontinuous
(surface reflectance 1s piece-wise constant) and that sur-
faces are smooth, or piece-wise smooth. The last two con-
straints are commonly used in computational models of
reflectance and shape estmation (Land and McCann,
1971, Horn, 1974), though their ecological validity has not
been rigorously tested

What are the constraints on scene attributes which are
incorporated into human visual system processing?
These constraints may also be one of two types, nomo-
thetic or statstical. The constraints may or may not match
the ecological constraints of the physical environment.
Consider the image of three cylinders viewed through an
aperture shown in Fig. 7.4. The cylinders appears to be
painted with stripes of different colour, and appear to be
oriented in different direction relative to the viewer. The
orientations of the cylinders are formally ambiguous. The
strength of the percept, therefore, indicates that the visual
system assumes some constraint on the relationship
between the contours formed by the reflectance edges and
the shape of the cylinders which serves to disambiguate
the orientations of the cylinders. A specific proposal for
this constraint has been discussed, suggesting that it
reflects a perceptual bias toward an interpretation of
reflectance edges as geodesics of a surface (Knill, 1991).
Consideration of the above two questions leads to
another question.

Is any given ecological constraint on scene attributes
wmcorporated into visual system processing, or is any given
constramt which appears to be enforced by the visual system
ecologically vahd?

There are, of course, just two ways of asking the same
question, and how it is asked in any particular case is a
matter of methodological convenience.

Fig. 7.4 Three cylinders panted with barber pole patterns, each of which appears at different ortentations from the line of sight.
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Psychological rescarch into the environmental aspect of
perception should be focussed on the second and third
questions, as the first question is properly the domain of
the physical sciences. A teleological argument, however,
suggests that this research should always be tempered by
consideration of the ecological constraints. One might
expect, after all, that the human visual system had adapted
to bring the phenomenal perceptual world into as close a
correspondence with the real world as possible given
physiological  limitations. Moreover, the apparent
accuracy of our percepts argues for the ecological validity
of the constraints imposed by the visual system.

The Functional Goals of Human
Observers

Ultmately, the functional goal of visual perception is to
guide behaviour in the naturel environment; either imme-
diate or future. Consideration of the perception-action
loop as a whole is sometimes possible, and appropriate. In
general, however, the complexity of the intervening pro-
cesses makes 1t necessary to consider perception as a separ-
ate process and, furthermore, to 1solate different aspects of
perception for study. The different aspects may also some-
umes be considered to reflect different levels of processing
in the visual system (e.g. image coding and transduction vs
object recognition). The functional goals which may be
associated with the different aspects of perception are
often assumed in studies of perception; however, what
they are is itself a question open to empirical investigation.
The ideal observer framework is well-suited to dealing
with this question.

Within the ideal observer framework, functional goals
are identified with those characteristics of the environment
which the visual system extracts from images. These char-
acteristics may be implicit in a perception-action loop; that
15, they are those characteristics of the environment
required for the control of a certain action. They may also
be those characteristics which are made explicit in the
system for further cognitive processing or for the forma-
tion of memorics. The appropriate question to ask con-
cerning the functional goals of visual perception is:

What scene attributes does the human visual system extract

from images?

In the formal specification of the ideal observer, this cor-
responds to inquiring into the form of the scene-to-
diorama map, 1, which maps S to S*. Intuitively, the way
to approach the problem empirically is to design experi-
mental tasks for which a subject requires information
about different scene attributes, and to search for those
tasks for which subjects’ performance most closely
approaches that of the ideal observer for the task. One can
argue that the scene attributes required for performance of

these tasks are the ones which the visual system is designed
to extract from images. Some studies of image coding and
transduction properties of the visual system and of simple
image domain tasks have successfully made use of this
approach (Barlow, 1978; Kersten, 1984; Geisler, 1989);
however, it has yet to be applied to the so-called ‘higher
level” problems of scene production.

The Image Formation Process

As with questions about the relationship between environ-
mental structure and perception, questions about the
image formation process may be asked in one of two ways;
from the point of view of the ideal observer and from the
point of view of the human observer. Thus we can either
ask questions about the projective map, 7, and the image
noise, which together make up the image formation pro-
cess, or we can ask questions directly about the selection
function p(//5). The general questions are as follows.

What 1s the nature of the projective map and the noise, 1f
any, which corrupts the image?

A complete characterization of the projective map involves
both the mathematics of perspective projection and the
physics of light reflection and refraction by objects, liquids
and gases. This is well enough understood for the genera-
tion of realistic images through computer graphics; in
which the limitations to realism are primarily found in
algorithmic complexity and the accurate modelling of
scenes. Noise must be considered only if one takes the
image to be represented at some stage of processing in a
real visual sensing system, such as the light captured by
retinal photoreceptors, or the outputs of the photo-
receptors.

What 1s the nature of the sketch I*?

One research goal is to seek out correspondences between
known neural mechanisms and sketches, /*. As an exam-
ple, a sketch of band-pass filtered images bears a strong
resemblance to output of retinal ganglion cells. At the
functional level, sketches must be found which make
explicit the information required to estimate specific scene
characteristics. An example would be measurements of
dilatation and rotation components of the optic flow ficld
as information for estimating direction of heading.

How does the ideal observer's selection function, p(1/S),

constram the scene which could have grven rise to an image?
These constraints are derived from the characteristics of
the projective map and the noise. If we take as the starting
point for our investigation an idealized image, uncorrup-
ted by noise, we can rephrase the question as, ‘what are the
attributes of the scenes contained in 7~ (/)" A good
example of research into this question for natural scenes is
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the work of Koenderink and van Doorn on invariant rela-
tions between surface shape and the projected image
(Koenderink and van Doorn, 1976, 1984; Koenderink,
1984).

How does the human observer’s selection function,
p(I/S), constrain the scene which could have given
rise to an image?

Does the human visual system enforce the constraints
imposed by the ideal observer’s selection function? How
similar are the attributes of scenes perceived by humans to
the same attributes of the scenes in 7~ (7). Can the dif-
ferences be reasonably explained by postulating the injec-
tion of noise somewhere in the processing stream, or are
they duc to improper adaptation to the environment®
These are some of the detailed questions which one may
pose about the observer’s selection function.

Further Questions

The questions listed above lead to further questions which
bridge some of the different aspects of perception we have
outlined.

Homw are the different constramts weighted?

An important aspect of this problem is the question of how
the constraints imposed by the image are weighted relative
to ccological constraints built into visual system pro-
cessing. As illustrated by the example of regularization
techniques given later in the chapter, the relative
weighting for the ideal observer is determined by the form
of the image noise. In the case of a noise-free image, con-
straints on perceived scene attributes imposed by the
image are ‘hard constraints’ which should never be vio-
lated. Do the relative weights apparent in the human
visual system reflect simply the effects of noise or are they
examples of misadaptation to the environment? i

What constrants are learned and how are they learned?
Part of this problems is also the question of what weights
are learned and how they are learned.

What algorithms and mechanisms are used in the visual
system for the implementation of the different constraints?

Comparison with Other
Approaches

The statement that perception is a process of statistical
inference has the familiar ring of Helmholtz's theory of
unconscious inference. A rough summary of Helmholtz’s
idea is that an observer perceives in an image those scene
attributes which would have normally given rise to the

image. The observer unconsciously applies knowledge of
the structure of the environment, gained through associa-
tional learning, t disambiguate an image (Helmholtz,
1925). The theory was developed more thoroughly by the
transactionalists (Ittleson, 1960) and is present in contem-
porary information processing approaches to perception
(Gregory, 1973; Rock, 1977).

A number of the concepts of the transactionalist
approach map onto the probabilistic framework presented
here. The notion of equivalent scene configurations for an
image corresponds to the inverse projective map, 7~ !,
and the assumptions about environmental structure pro-
posed to be used by the visual system to disambiguate
images correspond to characteristics of the visual system’s
prior distribution, p(.S). The focus of the transactionalist,
and later information processing approaches, however,
has been on the study of depth and shape cues used by the
visual system to ‘fill in’ the depth dimension. The tradi-
tonal cues studied include retinal accommodation, size,
interposition, linear perspective, aerial perspective, bin-
ocular disparity, convergence and motion parallax. Cues
which have begun to receive significant attention are tex-
ture gradients, shading and contour form. One problem
with the cue concept is the equivocality of its definition. As
Ittleson says about the definition of cues,

The most obvious drawback to the descriptions 1s their lack of

consistency. Some cues are described primarily in terms of the

attributes of the physical object, some in terms of the light
energy, some with reference to physiological excitation and
some entirely i terms of psychological factors. This hetero-
genety 1s not accdental. It reflects a basic property of the cue
concept. A cue 15 not something that can be ponted to; rather
i represents a complex interrelationship between a number of
aspects that must be taken into account in the defimtion of the
cue (Ittleson, 1960.)
Many of the image cues (as opposed to physiological cues
like accommodation and convergence) confound con-
straints on the image mapping of scene artributes with
ecological constraints on the structure of these characteris-
tics. As an example of this, consider the images shown in
Fig 7.54Thccnn\'crgingcnntoursnndthchrighmc.x»;dlﬁcr-
ences in the perspective painting of a cubic block shown in
!’ig. 7.5(a) provide a cue to the 3-D shape of the block only
in so much as the contours have been labelled as corners of
a polyhedral object and the shading has been attributed to
differences in orientation of the sides of the object. The
pattern of convergence of the contours, however, also con-
tributes to the labelling itself of the contours as polyhedral
corners. A similar image shown in Fig. 7.5(b) appears as a
flat surface and the contours as discontinuities in surface
reflectance. How then can the contours be said to be a cue
fqr shape? One might argue that the contour pattern pro-
vides a cue to the shape of a surface in the sense that it
constrains the percept to be one of a cube. This is
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Fig. 7.5 The image n (a) appears as a perspective view of a
shaded block, while the image in (b) appears as a multi-coloured
flat surface

undoubtedly true, but is no more than a restatement of the
perceptual phenomenon. A deeper understanding of how
and why the contours constrains percepts in this way
requires an investigation into the different constraints
which go into making up the cue.

Perhaps the major problem with the notion of depth or
shape cues, is that it has led to the implicit modularization
of visual perception in empirical research. Modularization
appears in two forms; first, in the attempt to isolate indi-
vidual cues for study, and secondly, in the inherent treat-

ment of depth and shape perception as the result of

separate processes from those involved in the perception
of other scene attributes such as surface reflectance and
illumination. The modularization of visual information
processing, used by the transactionalists as a necessary
simplying assumption for empirical research, was raised to
the level of a principle in the computational approach pro-
posed by Marr (1980):

the idea that a large computation can be spht up and
implemented as a collection of parts that are as nearly
independent of one another as the overall task allows, 1s so
important that | was moved to elevate it to a principle, the
principle of modular design Information about the geom-
etry and reflectance of visible surfaces 1s encoded in the image
in various ways and can be decoded by processes that are
almost independent.

Interestingly, studies (Gilchrist, 1980; Kersten, 1990)

have shown that the visual system does compute some
information about surface geometry such as orientation
and curvature, cooperatively with surface reflectance. For
the purpose of studying human visual perception, un-
tested assumptions of modularity unnecessarily limit the
scope of inquiry. A study of constraints does not rely on
assumptions of modularity or non-modularity. Modu-
larity is left as a hypothesis, open to empirical investiga-
tion, about the nature of the processing mechanism which
incorporates the constraints in the visual system.

While the notion of probabilistic inference is inherent to
an information processing view of perception, the focus on
constraints and the view of perception as constraint satis-
faction is reminiscent of Gestalt theories. The central con-
cept in Gestalt theories of perception is that of Pracgnanz;
that ‘psychological organization will be as good as the pre-
vailing conditions allow’ (Koffka, 1935). The central prob-
lem for Gestaltists was the elucidation of the organizing
principles which govern the formation of percepts.
Toward this end, Koffka identified ‘goodness’ with
minimum-maximum properties; such as maximum sym-
metry, minimum variation of form, and so on. This funda-
mental concept has led to a number of general Pracgnanz
principles, such as energy minimization in ‘soap bubble’
systems (Attneave, 1982), minimal coding of scenes
(Leeuwenburg, 1971), and minimization of ‘changes’ in
scene attributes (Hochberg and McAlister, 1953). The last
two are examples of so-called principles of efficiency. As
carly as the late nineteenth century, Mach pointed out the
relationship between an efficiency principle and a prob-
ability principle (Mach, 1980). A similar relationship
holds for minimum energy principles. In either case, the
organizing principles can be re-posed as characteristics of
the probability distribution assumed by observers for
scene attributes in the environment.

Gibson criticizes Gestalt theory for being focussed on
the constructive role played by the observer in perception
at the cost of disregarding the relationship between the
observer and the environment (Gibson, 1982). Attneave
and Frost (1969) make this perspective clear, saying, ‘A
Pracgnanz principle assume a teleological system (as
Koffka, 1935, explicitly recognized) in which simplicity
has the status of a final cause, or goal-state.”

No reference is made to functional goals of a behaving
organism. Consideration of Praegnanz principles as char-
acterizing an observer’s model of environmental structure
is the necessary step in bridging the gap between the
observer and the environment. In this light, the Gestalt
programme of research deals with only half the prnblcm of
perception, as it is also necessary to characterize the
properties of ideal observers. The two aspects of the prob-
lem should be studied jointly, as understanding of one can
guide research into the other.

The claim that visual perception should be understood
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as a relationship between human observers and ideal
observers is equivalent to the point by Gibson and
Brunswik that perception should be considered in its rela-
tonship to the normal environment of an organism.
Gibson further claims that the information for the percep-
tion of functionally important attributes of scenes 1s
umambiguously represented in the image (or what he
referred to as the ‘ambient optic array’), and moreover,
that this information is picked up ‘directly’ by an observer
(Gibson, 1979). As mentioned previously, the first clarm
amounts to a claim that for the appropriate 5*, the condi-
tional distribution, p(S*/7), is a Dirac delta function sup-
ported at one point in the ensemble, Ags. The second
claim, developed further, states that one can find image
properties which are invariantly related to each individual
scene characteristic in S*. This claim brings to mind the
modularity of processing referred to earlier as a character-
istic assumption of cue processing approaches. Implicit in
the claim is the assumption that each of the attributes in
S§* can be independently detected in an image.

Within the probabilistic framework, the two aspects of
Gibson’s theory can be formulated as constraints on the
ideal observer’s posterior conditional distribution,
P(S*/I). The first is that with the appropriate selection of
scene attributes, the posterior distribution can be
expanded into the product of independent distributions of
the individual scene attributes conditional on the image;
thus, letting $* = (s, 5,, $,,. . ., 5,), we have

PS*)=pls,[Dpls,[Dp(sy 1) . p(sa/T) - (7.11)

A search for scene attributes which depend independently
on the image is important; however, the independence
criterion is not enough to determine the functional rele-
vance of a given scene characteristic for human percep-
tion. Furthermore, many cases may be found in which
the human visual system apparently does not generate
percepts of different scene attributes independently
(Hochberg, 1974; Epstein, 1977), including the previously
mentioned example of cooperativity in the perception of
lightness and spatial layout.

(The counter-argument to these examples is generally
that rescarchers have simply considered inappropriate
characterizations of scenes, and an appropriate redefi-
nition of the scene attributes of interest will lead to ones
which are independently specified in the image. An exam-
ple of this is the postulate of ‘shapc-at-a-slant’ as the
appropriate psychological variable for the perception of
skewed figures (Beck and Gibson, 1955) Whether this is,
in fact, the functionally appropriate variable should be
opened to empirical investigation, and not simply assumed
based on the argument that 1t matches the independent
criterion for the types of stimuli considered. As we have
pointed out, the ideal observer construct provides an ideal
mechanism for testing these sorts of assumptions.)

The second aspect of Gibson’s theory, that appro-
priately defined scene attributes are unambiguously repre-
sented in the image implies that each p(s;/7) in Equation
7.11 is a Dirac delta function. This condition clearly does
not hold for all perceived scene attributes in all viewing
conditions. All other considerations aside, physiological
limitations on the pick-up of information from images,
such as image biurring outside the foveal region and the
addition of noise in the nervous system, preclude this pos-
sibility for human observers (Hochberg, 1982). These
limitations increase the importance of statistical con-
straints on environmental structure in perception. Con-
sideration of statistical ecological constraints was central to
Brunswik’s version of ‘ecological’ psychology. Realizing
the importance of these constraints led Brunswik to
develop an empirical framework based on correlation stu-
dies of scenes, image cues and percepts, what he called
representative functionalism (Brunswik, 1956). He con-
sidered the environment, however, to be too complex to
allow the more in-depth analysis of its relation to percep-
tion proposed by Gibson. The probabilistic framework
presented here 1s really a generalization of Gibson's analy-
tical approach to consideration of a stochastcally defined
environment as envisaged by Brunswik.

The probabilistic framework is most closely related to
the natural computation approach of Whitman Richards.
In fact, Richards explicitly recognizes the link between his
approach and a probabilistic view of perception (Richards,
1988). The one difference in the approach presented here
is in the emphasis on the ideal observer formulation as a
tool for empirical research, particularly, in its potential use
for testing hypotheses about the functional goals of human
observers. Otherwise, the research questions presented
here as derivative of a probabilistic view of perception are
the same as those considered by Richards to be of basic
importance.

Some may argue that a probabilistic framework is too
general to be of practical use for the study of perception.
Not only does it have little predictive power as concerns
the mechanism of perception, but is it general enough to
accommodate as special cases theoretical approaches as
divergent as information processing psychology, Gestalt
psychology and ecological psychology. It does, however,
make expliait as the fundamental objects of research those
clements of the problem of perception which are common
to cach of these approaches; namely the constraints on the
interpretation of the physical causes of images in the
environment. These constraints are at the root of the
structure of traditional image cues, Gestalt rules of organi-
zation and Gibson’s invariants (Flock, 1964). The prob-
abilistic framework, therefore, provides an organizational
structure in which one can consistently consider concepts
often supposed to be diametrically opposed to one
another.
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Application of Ideal Observer
Analysis to Neural Networks and
Natural Computation

A few concrete applications will elucidate the usefulness of
ideal observer analysis. In the first application we will
show how the ideal observer relates to specific mech-
anisms of neural networks. In the second application we
will develop the ideal observer for a world consisting only
of thin wires. Although only a ‘toy’ world, this analysis
quantifies and makes explicit the nature of the line projec-
tion assumptions used in some models of visual recog-
nition (Biederman, 1987).

Probability to Neural Networks

One early connection between ideal observers and pro-
cessing by single neurones was suggested by the high per-
formance of human observers relative to ideal for the
contrast detection and discrimination of Gaussian
windowed sinusoidal luminance patches in visual noise
(Burgess et al., 1981; Kersten, 1984). High performance
and the way in which human detection efficiency varied
with width suggested that cortical simple cell processing
might account for the data. Ideal performance is calcu-
lated by maximizing the likelihood of a known signal
against noise and can be achieved by a linear cross-
correlation of the input signal with the known signal.
Highest detection performance is expected when the
visual image most closely matches the receptive field of the
neurone.

Image understanding problems require going beyond
simple detection to the estimation of a typically large set of
parameters. As we have seen carlier, this requires a more
sophisticated modelling of prior constraints than for
detection. We would expect that estimation mechanisms
involve compuration by a large collection of neurones.
Most current work is only suggestive of what real neural
networks might achieve, but serves to illustrate how one
can establish a bridge between the abstract formalism of
Bayesian ideal observers and neural mechanism. One
computational approach which has been mapped to neural
networks is regularization theory (Poggio e al., 1985). By
reformulating standard regularization theory within a
probabilistic framework, one can show the relationship
between linear neural network models and ideal observers.

A number of computational models for problems as
diverse as structure from motion and shape from shading
may be reformulated under the umbrella framework of
regularization theory. The basic method in this approach
is to select as the interpretation of the scene which pro-
jected to a given image that scene which minimizes some
error functional. The error functional consists of an image

error term, which reflects how well a scene matches a
given image, and a penalty term which incorporates prior
constraints (typically in the form of smoothness) on
scenes. The models typically use representations of images
and scenes which may be expressed as functions of the x
and y coordinates of a planar image. For the case of a static,
monochromatic image, / would be a function /(x,y) spec-
ifying the light intensity at each point in the image. S is
generally some vector function specifying local attributes
of surfaces in a retino-centric coordinate system, S(x,y).
The total error over a bounded region R in an image may
be expressed as

E(1S)= J‘J. A (xy)—n(S(xy))? + P(S(x,y))*dxdy
R (7.12)

where (/(x,y)—n(S(x,y)))* is the image error and
P(S(x,y))? is the penalty function (often referred to as the
regularizing function). The constant / is a Lagrange mul-
tplier which weights the relanive contributions of the
image error and penalty terms.

For what environment would such a model be an ideal
observer? The relationship between optimal Bayesian
estimators and regularization methods has been developed
by others (see, e.g. Marroquin, 1985; Kersten et al., 1987;
Szeliski, 1987) and is well understood in the computer
vision community. Minimizing Equation 7.12 is equiva-
lent to maximizing the probability density function

nsi=kespl= [ [ e =sistesnr

+ P(S(x,y))* +dxdy] (7.13)

where £ is selected to normalize the distribution. We can
rewrite Equation 7.13 as

ASID=kexpl~ %”Rumy) ~ 7(S(x) ]

expl — '”.R P(S(x,y))?dxdy]
(7.14)

where we have replaced 4 with 1/207. If we let

p1/S)= kexpl — —I:”‘R( I(x,y) — 7(S(x,»)) dxdy]
20?

(7.15)
AS)= kyexp[— fﬁj’( S(x,y)) dxdy] (7.16)
and
_ bk,
A i (1.17)
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where &, and £, are normalizing constants, we can relate
Equation 7.14 to the posterior density function for the
ideal observer for noisy images given in Equation 7.9, in
which p(7/S) is the conditional density function for an
image corrupted by additive white Gaussian noise with
variance ¢. Regularization models which make use of
Equation 7.12 are ideal observers in a world in which the
statistical structure of the environment can be character-
ized by a Gibbs distribution as in Lquation 7.16, and in
which the image available to the observer is corrupted by
additive Gaussian noise. In socalled standard regulari-
zation where 7 and P are linear operators, S can be esti-
mated from / by a linear neural network (Poggio et al
1985). Whether this sort of linear approximation is
actually a good model of neural processing is an open
question. One possible candidate is the solution of the
aperture problem by projections from area VI to MT of
cortex (Sereno er al., 1988).

If the precise form of the prior constraint operator 2, or
the image formation function 7 are unknown, it is possible
to learn the best linear approximator to estimate scene
parameters from image data (Kersten ez al., 1987; Knill
and Kersten, 1990). This estimator corresponds to the
1deal MAP estimator when the image formation function
1s linear and the stanstical distribution of the image noise
and scene prior are Gaussian.

Ideal observer analysis is not restricted to linear models
of neural networks. One of the major contributions to the
theory of neural networks was to show the existence of an
‘energy’ function for both linear threshold and linear sum-
mation followed by sigmoid non-linearity models of neur-
ones (Hopfield, 1984). The energy function depends on
the state of the network and its value decreases as the
neural clements are updated. It is straightforward to inter-
pret the energy function as the negative exponent of a
Gibbs distribution that the network is trying to maximize,
and thus as a mechanism for secking the MAP ideal
observer solution for the world the connection strengths
represent. Golden has shown that several major theor-
etical models of neural networks, including  back-
propagation, can be interpreted as MAP estimation
(Golden, 1988).

Wire World: Ideal Observer Analysis and
Natural Computation

Contours formed by discontinuities in luminance in a
static image are caused by discontinuities in one or another
characteristic of a scene. They may be caused by discon-
tinuities in surface reflectance, surface orientation or
illumination, or by the self-occlusion of a smooth object
relative to the viewpoint of the observer. Such contours
provide highly reliable information for the perception of

such scene attributes as surface shape and illumination
conditions, or for the categorization of objects. A number
of properties of the contours are taken to have an invariant
relationship to the generating discontinuities in the scene.
The invariants arc either preserved exactly in the projec-
tive map, or are assumed to hold 1n almost all cases, except
tor accidents (Waltz, 1974; Biederman, 1987). Examples of
the latter are collinearity, parallelism (under orthographic
projection) and straightness. These invariants are assumed
by many people to depend only on the assumption of a
general viewpoint on a scene and not on any statistical
structure in the environment. In the example to follow, we
will show that one of the assumed invariants, that of
straightness, does in fact depend on the environment
having a certain statistical structure. In an environment in
which the shapes of physical discontinuities are arbitrary,
the straightness invariant does not hold. It does not hold
even in some environments in which straight discontinui-
ties are the most likely discontinuities to occur. For the
nvariant to be nomothetic; that is hold with probability
one, the discontinuities, in the environment must have
some categorical structure, with a non-zero proportion of
discontinuities being straight, and the rest being curved,
though the actual proportion of discontinuities which are
straight does not affect the result, and it could be quite
small.

We will analyse the validity of the straightness invariant
by developing an ideal observer in a simple toy world
consisting only of open thin wires. We will assume for
simplicity that the observer only sees one wire at a time
and that both the viewpoint of the observer and the wires
are static. We will approximate the wires as open curves in
a three-dimensional Euclidean space and their projected
images as open curves in a two-dimensional Euclidean
space. To further simplify the discussion, we will assume

=

Fig. 7.6 Examples of the types of wire in the wire world
arcular arcs, helical arcs and straight lines. These are the three
types of shapes which could be created by physically bending or
twisting a thin straight wire at its end-points. )
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that the wires have constant curvature and torsion, con-
straining the wires in the toy world to being either straight
segments, circular arcs or helical arcs (see Fig. 7.6). To
visualize the curvature and torsion of a wire, imagine
laying a straight wire on a flat table and bending it. If the
wire is bent without twisting, it will stay flat on the table. If
it is twisted when it is bent, however, the wire will pull
away from the table. The curvature of the wire specifies
the degree to which it is bent at each point, while the
torsion specifies the degree to which it is twisted away
from being flat. We will assume orthographic projection,
though the result generalizes easily to the case of perspec-
tive projection.

A scene consists of one wire floating in space, so our
model of the scene, .S, must specify the spatial configura-
tion of a wire, which, in our toy world, is completely
defined by the position of one end-point of the wire, the
orientation of the wire at that end-point, its curvature, its
torsion and its length. Thus, we have for S

S={X,. Yoo Zpn O, Ou, . K, T L) (7.18)

0<X,<1,0<Y,<1,0<Z,<1,0<P,<21,0<X,
<m, <0,<2r, K,>0, L,>0). The triple, {X,, Y,
Z,.) specifies the position of an end-point of the wire. The
end-point is arbitrarily chosen. We have constrained the
position of the end-point of the wire to a unit cube. 1
and ©,, specify the orientation of the wire at the end-
point, with @, being the tilt of the wire, its orientation
away from the horizontal in a fronto-parallel plane, X, the
slant of the wire, its orientation out of the fronto-parallel
plane, and ©,, the orientation of the normal vector of the

ig. 7.7 The local geometry of a wire at its end-point, p. The
origin has been arbitranily placed at p. The ortentation of the
wire at p is specified by the triple of orthonormal vectors,

{t,n,b). 1 15 the tangent vector of the wire, m 1s its normal vector,
pownting in the direction that the wire bends, and b 1s the
binormal vector of the wire, pointing parallel to the direction that
the wire tmsts out of the plane

wire, relative to the line of sight (®,, specifies the direction
in which the wire curves at its end-point). Since a straight
line has no curvature, its normal vector is indeterminate;
therefore, we will assume that ©, = 0 for straight lines, K,
and 7, specify the curvature and torsion of the wire, and
L, specifies the wire's length (in the case of a planar wire,
for which some of the wire might be occluded from the
observer, L,, represents the length of the portion of the
wire which is visible). Fig. 7.7 summarizes the geometry of
the scene. From Equation 7.18, we see that Agc #°,
where A g is the stochastic ensemble from which particular
instances of .S are drawn.

The image of a wire can be characterized as the shape of
the contour to which the wire projects. We will represent
this using the position and orientation of one end of the
contour and the curvature of the contour as a function of
arc-length. Thus, we have for /

I={X, Y, ®, K,(s), L} (7.19)

0<X,<1,0<Y,<1,0<®,<27,K,(s) >0, L,> 0) where
the pair, [X, Y.} specifies the position of the end-point
of the contour, @, specifies the orientation of the contour
atits end-point, K (s) specifies the curvature of the contour
as a function of arc-length, and Z, is the length of the
contour. Note that K(s) is a function, whereas K, is a
scalar variable.

We are now ready to formulate a statement of the
straightness invariant in a probabilistic framework. Let us
define a diorama to characterize the straightness of a wire,

_ (straight; if K,=0and 7,,=0
Se= curved; otherwise (7.20)
An image with a straight contour is given by
I={X,=x, Y=y, ®,= ¢, K,()=0; Vs, L, =1}
(7.21)
where x,, y, is the endpoint of the contour, ¢, is its orienta-
tion and /, is its length. With these definitions, the
straightness invariant may be stated formally as

HS*=smaight/I=1)=1 (7.22)
that is, given an image of a straight line, the probability
that the wire in the scene is straight is onc. )

We will expand the invariant Equation 7.22 using
Baye’s rule to analyse the implications it has for the struc-
ture of the wire world environment. We have

MS*=straight//=1)=
s carsgnd = 11S)(S)4S

=1
_ j\rq m— 11S)(S)dS
[sen, M1=1/S)p(5)dS (7.23)
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where 1, in this case, is a projective map which takes S to
S*. The set, ' (straight) <Ay, is a seven-dimensional
slice through A along the hyperplane defined by K, =0,
T,,=0. The density function p(1= I/ has the following
characteristics. The position of the end-point of the con-
tour partially determines the position of the endpoint of
the wire (X,=x, Y,=y, under orthographic projec-
tion), the orientation of the contour fully determines the
tilt of the wire at its endpoint (D, = ¢b,), the straightness of
the contour determines the orientation of the wire’s
normal vector (©,=0) and the torsion of the wire
(T«=0), and the length of the contour determines the
length of the wire as a function of the slant and curvature
of the wire (L. f(Z,,K,,/,)), which, following a simple
derivation, is given by

Ly=Z0Kunl)

7(|_[mx‘ YeosZ,— Kpl)—Z,] if Kp,>0

I[smZ,, JIFK,=0
(7.29)

From these facts, we can derive an explicit expression for
p(I=1]S), given by

1;if Xo=x, Yo=Yy, D=9,
nI=115)= Z::;%:\:?'[(p(;:)’\-!' cosE, <1and
0 ; otherwise
(7.25)

The constraint that K4, — cos £, < 1, for p(I=1/S)=1,is
derived from Equation 7.24 for the length of the wire. An
intuitive explanation of this constraint is that a arcular arc
must have a radius of curvature (1/K,) greater than a
certain limiting size in order to project to a contour of a
given length.

We will use these facts to show that if p(S) is a smooth
density function (e.g. a uniform distribution over the vari-
ables in ), then p(S* = straight// = I) = 0. The result will
follow from the fact that 7 constrains the possible values of
S to a three-dimensional volume in Ag, whereas the sub-
space of A for which §* = straight is a two-dimensional
surface in this volume. If p(5) is smooth, then the prob-
ability of any given surface in Ag occurring in a given
volume is zero. To understand this result, consider by
analogy the case of a real scalar random varable, X, with
smooth probability density function, p(.X). The probabil-
ity that X takes on any given value, X = x, is zero. We can
view this as the probability of a zero-dimensional subspace
of a one-dimensional stochastic ensemble, A y< A" In
order for the probability of a given value of X, X = x, to be
greater than zero, the probability density function must

include a Dirac delta function defined at the point, x, in
Ay The Dirac delta function serves the purpose of con-
centrating a non-zero proportion of the probability density
at the point, x. Simularly, any m-dimensional subspace of
an n-dimensional stochastic ensemble, Ayc 2", wherc
m < n, has probability zero, if the probability density func-
tion, p(X), 1s smooth. Again, a Dirac delta function must
be included in the definition of p(X) to concentrate a non-
zero proportion of the probability density in the given
m-dimensional subspace of A x

Returning to the problem at hand, we can rewrite the

numerator of Equation 7.24 using Equation 7.25 as

J-\»», (straighty P/ = 118)ds = j er. PXe=x, Y=,
Zp=2m Oy=¢, L;=0,,
0,=0,K,=0,T,=0,
L,=AZ,.K..l,))dzdo,

(7.26)

where R, is the region {0<z,<10<0,<m}.
We can rewrite the deonimator using a similar expansion,
to obtain

[seas 6(I=1/S)dS = ([ [rn A Xp=2%0 Yu=Da
Zy=2p V=0, L,=0,,
©,=0, Ky=k,, T,=0,
L,=X,.K,,l))dz,de,dK,

(7.27)

where R, is the region, {0<z,<10<0,<7, £,>0,
Kel,—cos ,<1} The region of integration for the
numerator is the two-dimensional surface in Ag defined
by seven equations in nine unknowns,

K.=0
T.=0
Xp=1x,
Yo=y, (7.28)
O,=9,
0,=0

Le=fZnKwTy)

The region of integration in the denominator is the three-
dimensional volume in A g defined by the last six of these
seven cquations and the constraint equation

Kuli—cos Z,<1 (7.29)

We sce, therefore, that p(S* = straight//=I) is the prob-
ablity of occurrence of the two-dimensional surface given
by Equation 7.28 in the three-dimensional volume given
by Equation 7.29; therefore, If p(5) is smooth over A g, we
have p(§* = straight//=I)=0. Even if p(S) were defined
so that the K, =0, 7., =0 was a mode of the distribution,
the result would hold, as it only depends on the condition
that p(.5) be smooth. In order for the straightness invariant
to hold, the definition of p(.5) must include a Dirac delta
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function at K, =0, 7,.=0. An example of an appropriate
density function for S is

A =(1=g)pAS)+q kS (K2 + T2) (7.30)
where p,(5) 1s a smooth density function over S, ¢ is the
proportion of straight wires in the environment, and £ is a
uniform probability density spread over the six-
dimensional subspace of A defined by K,=0, 7,=0.
&() is the Dirac delta function. The straightness invariant
will hold in an environment with a structure characterized
by the modified p(S5), regardless of the value of ¢.

If we were to generalize the wire world model to allow
wires with non-constant curvature and torsion, we would
obtain the same result. The inclusion of other wires would
lead to an increase in the dimensionality of Ag, but this
increase would be entirely contained in an increase of the
dimensionality of the subspace of curved wires, leaving the
dimensionality of the subspace of straight wires constant
(the constant curvature and torsion world already contains
all the possible straight wires). In the formulation given
above, this would lead to an increase in the dimensionality
of the subspace over which the denominator in Equation
7.24 is integrated, while the dimensionality of the sub-
space over which the numerator is integrated would
remain two. Thus p(S*=straight//=17) would be the
probability of occurrence of a two-dimensional surface in
an n-dimensional volume, where n > 3. As before, a Dirac
delta function which concentrated a proportion of p(S) in
the subspace of straight wires would be necessary to obtain
the straightness invariant.
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