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0.1 Overview

Bayesian approaches have enjoyed a great deal of recent success in their appli-
cation to problems in computer vision (Grenander, 1976-1981: Bolle & Cooper,
1984, Geman & Geman, 1984; Marroquin er al.. 1985; Szeliski, 1989; Clark &
Yuille, 1990: Yuille & Clark, 1993; Madarasmi et al., 1993). This success has led
lo an emerging interest in applying Bayesian methods to modeling human visual
perception (Bennett ef al., 1989:; Kersten, 1990; Knill & Kersten, 1991; Richards
et al., 1993). The chapters in this book represent to a large extent the fruits of this
interest: 4 number of new theoretical frameworks for studying perception and some
interesting new models of specific perceptual phenomena, all founded, to varying
degrees, on Bayesian ideas. As an introduction to the book, we present an overview
of the philosophy and fundamental concepts which form the foundation of Bayesian
theory as it applies to human visual perception. The goal of the chapter is two-fold:
first, it serves as a tutorial to the basics of the Bayesian approach to readers who
are unfamiliar with it, and second, to characterize the type of theory of perception
the approach is meant to provide. The latter topic, by its meta-theoretic nature, is
necessarily subjective. This introduction represents the views of the authors in this
regard, not necessarily those held by other contributors to the book.

First, we introduce the Bayesian framework as a general formalism for speci-
fying the information in images which allows an observer to perceive the world.
Such a specification, however, is only one side of the story of perception, written
from a point of view outside an observer’s head. It characterizes the information
available to observers for perception, not how observers use this information. To
characterize how observers use visual information requires a description of how the
visual system makes inferences about the world based on image data, and is the
point of view most commonly associated with information processing approaches
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to perception. Secondly, therefore, we re-introduce the Bayesian framework in the
context of modeling perceptual inference. By taking both points of view, we hope
to highlight the fact that a Bayesian approach provides a useful framework for
modeling both information and inference, and that the elements used to model in-
formation are equivalent to those used to model perceptual inference. In particular,
we will see that explicit models of world structure (i.e. regularities in properties
of the world) are needed to completely characterize both the information provided
in images for perception and the actual inferences made by the visual system in
the course of perception. The information problem demands of us models of the
“true™ structure of the world, whereas the inference problem demands models of
the implicit assumptions about the world which the human visual system relies on
for perception.

The introduction is organized into four parts: a qualitative formulation of the
general problem of perception as communication, a brief tutorial on the Bayesian
formulation of information, a reconceptualization of Bayesian formulations in terms
of perceptual inference and a brief discussion of some of the issues involved in
modeling visual perception within a Bayesian framework.

0.2 Perception as communication

Formulating visual perception as communication provides a useful metaphor for
illustrating the nature of the information processing problem faced by the human
visual system. A generic communication system (see figure 0.1a) consists of a
message set, from which a transmitter draws messages, which it codes and sends
as signals down a channel 10 a receiver, which decodes the signal to determine
the message which was sent. Consider how this maps onto visual perception (fig-
ure (0.1b). For simplicity of discussion, we will consider the message set as the set
of all possible physical configurations of scenes in our world", While there is no
identifiable physical transmitter, we can consider the messages (physical scenes) to
be coded in the pattern of light reflected from surfaces and projected on a retinal re-
ceiving surface. The coding rules are the physical laws of light reflection, refraction
and transmittance and the geometric laws of perspective projection. The receiver
is the visual system, which processes the pattern of light impingent on the retina

" One can generalize the notion of "visual messages” 1o more abstract properties of a scene, such as the moods
and intentions of biological organisms. For such abstract messages, we must conceive of the coder as including
the processes by which these abstract properties are mapped to physical properties of a scene (e.g. facial
expressions). as well s the image formation process which encodes these physical properties. In some sense,
then, the set of messages is determined in part by exactly what an observer wants to “perceive”, This is not a
flaw in the metaphor, but does suggest caution in fixing our notions of what elements of the communication
metaphor map to corresponding elements of perception.
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Fig. 0.1 (a) A general communication system model: A transmitter draws a message S from
a bin according to some probability law, codes it into a signal I" and transmits the signal
down a noisy channel. A receiver receives the noisy signal, 1 and attempts to decode it to
determine the messages sent: that is, to estimate S. (b) The analogy with perception - § is
a description of a particular scene in the world. An imaginary coder codes this description
of scene properties in the form of an idealized image, I'. The visual system receives a
noisy, bandlimited version of this image. I, which it must use to estimate properties of the
scene S,

to “decode’ the message: that is, it determines as best it can at least some of the
properties of the scene which are projected to an image, or set of images.
Communication systems, at the level of abstraction used here, seem simple
enough; however, as any communication engineer will tell you, the details of most
real systems are quite complex. The code may not be complete (it may not be invert-
ible to uniquely determine the original, coded message) and the physical channel
will generally be bandlimited and noisy, so that the signal which arrives at the
receiver is a degraded version of the original. The job faced by the receiver is, there-
fore, highly non-trivial. The same is true in vision. If we take as the received signals
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patterns of photon capture (in space and time) in the retinal receptor mosaic, we see
immediately that the signal is bandlimited and noisy. This is due to the purely phys-
ical properties of the imaging process, such as optical aberrations and diffraction at
the pupil and the inherently probabilistic nature of photon emission and absorption.
More noise is added in the transduction of light energy to electrochemical energy
by receptors in the retina. Even if idealized as being uncorrupted by these influ-
ences, the received signals are not completely invertible, since the mapping from
a three-dimensional scene description to a two-dimensional image description can
potentially result in a loss of specificity. Moreover, the coding scheme embodied in
physical image formation is inordinately complex: it includes highly nonlinear, and
sometimes non-local effects: partial occlusion of one object behind others. inter-
reflections between surfaces and shadows, just to name a few. Thus, even in cases
where the decoding problem is theoretically well-defined, actually solving it is an
extremely difficult computational problem.

Two related properties of engineered communication systems can help ameliorate
a receiver's decoding problems: the set of messages often has a high degree of
statistical structure, the knowledge of which can aid in the decoding of a signal:
and the receiver often does not require a complete reconstruction of the transmitted
message. but rather is concerned with estimating high-level features of the message
(the existence of which result from the regularities in the message set). Consider.
for example. a satellite surveillance system which tracks the movements of military
ships and transmits the positions and trajectories of the ships to an intelligence station
on carth. The set of possible messages is the set of possible positions and motions of
military ships on the seas’ surfaces. The sender is the satellite computer/radio system
which codes the information and transmits it to a radio receiver on earth. The signal
received by the radio operator on earth will be corrupted by noise: thus, some of the
reported ships’ coordinates may be in error or may be missing altogether. The set of
messages has a very strong structure imposed by the constraints on positioning and
movement of military ships. Besides physical constraints (for example. on speed),
military ships are often clustered into groups whose motions are very strongly
correlated. A well-designed decoding system. when doing error correction on an
individual ship’s motion. should estimate it based not only on the data transmitted
for that ship, but also on the data transmitted for ships in its group. Moreover, the
military planners who ultimately will use the information received may only be
interested in fleet movements, thus the system could “average™ the data for each
ship in a group to produce an estimate of the fleet’s motion which is more reliable
than the estimate of any individual ships” motion.

The same situation holds for visual perception. The world has a tremendous
amount of structure. A simple and obvious example is that matter coheres into ob-
jects, the shapes of whose surfaces structure the light projected to images. Moreover,
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these shapes are not arbitrary, first being clustered in different classes (landscapes,
plants, rocks, man-made objects, etc.), and within these classes having certain regu-
larities (mountains being fractal, man-made objects tending to be symmetric, etc.).
The same holds true for other scene properties: for example, surface material is
constrained by natural laws, most objects are rigid, and when they aren’t, deform in
specific ways (e.g. the articulated motion of animate objects), ballistic movements
follow Newton's laws of motion, etc.. This structure helps to make the information
in images about scenes more reliable than it would be in a less structured world. It
also plays a significant role in determining what scene properties a visual observer
might be designed to estimate from images.

The perceptual problem faced by any visual system, like the decoding prob-
lem faced by the receiver in a general communication system, requires four basic
components (see column |, table 0.1) for its specification:

(1) The elements of interest in messages — for visual perception these are the properties of
scenes the visual system attempts to estimate. As mentioned above, the structure of the
environment plays some role in determining this, but so do the functional needs of the
organism. An excellent example is the importance of surface properties to perception,
which arises in part from the fact that matter coheres into objects and in part from the
fact that the surface properties of objects determine in large part how they interact with
cach other and with observers (e.g. balls roll mort easily than cubes).

(2) The structure of the message set: that is, the regularities which messages have - for
visual perception this is the structure of scenes in our environment (regularities in object
shape, etc.).

(3) The coding scheme used by the transmitter — in the context of visual perception, “the
transmitter” encodes scenes as an image signal. While in some absolute sense, one
should model the image signal as the pattern of photon capture over time in retinal
receptors, many problems in perception are more conducive to high-level descriptions
of the signal. This could be in terms of features such as optic flow, image contours
or texture gradients, to name a few. In these cases, the coding scheme would map
high-level features of a scene to high-level features of an image (e.g. edges of surfaces
map to contours along luminance discontinuities in images). Whatever the case. the
coding scheme is ultimately based on the physics of light reflection, refraction and
transmission and the geometric laws of perspective projection.

(4) The form of signal corruption - again, this depends on what one considers to be
the signal for a particular problem. A signal represented as the pattern of photon
capture over time in retinal receptors would be “corrupted™ by the uncertainty of photon
emission and capture. For analyses in which the signal is treated as a collection of
higher-level image features, the effects of physical corruption of the image are often
considered to be negligible for purposes of the problem at hand or are approximated
as noise added 1o the coding of the high-level features; for example, noise added to the
orientations or curvatures of image contours.
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Taken together, these four components define what properties of a scene a visual
system attempts to estimate in the course of perception and how these scene prop-
erties are encoded in images. In a deeper sense, components (2), (3) and (4) specify
the information content of images: that is, what images can potentially tell one about
the world. Note the role of the second component, the structure of the environment,
in the definition of information. It is not a second source of information which is
“added"” by an observer to image information, but rather it is an integral part of a
specification of what information images carry about scenes.

The discussion so far can be thought of as describing a particular way to char-
acterize perceptual problems posed to an observer. We can summarize this in the
following statement:

Perceptual problems posed to an observer are characterized by (1) the properties of the
world which an observer makes inferences about (e.g. shape), and (2) the information
provided by images about those properties, as determined by the prior structure of the
world, the coding scheme and the form of image data corruption.

A complete characterization of a communication system also requires specifying
how the receiver actually decodes the signals it receives to determine what message
was sent; that is, how it solves the decoding problem. Analogously, we are interested
in how an observer solves perceptual problems in the act of perception:

An observer's solutions to perceptual problems are characterized by (1) the properties of
the world which an observer makes inferences about, (2) the image data actually used by
observers as the basis for perceptual inferences and (3) the assumptions about image coding
and about the prior structure of the world used by the observer to make inferences.

The quality of an observer’s solution of a perceptual problem depends on how well
the observers’ assumptions about the world and about image coding match the world
in which it exists; that is, on the similarity between corresponding elements of the
perceptual problem and perceptual solution specifications.

The communication metaphor does not completely capture the difficulty of per-
ception. In prototypical communication systems, both man-made and biological,
senders and receivers are designed, or evolve, together; that is, the coding and
decoding schemes are designed hand-in-hand to match one another. The classic ex-
ample of this in the biological domain is human language, for which production and
comprehension systems evolved together. Moreover, the coding schemes are often
designed to ameliorate the problems imposed by signal corruption in the transmis-
sion channel (for example, by adding appropriate forms of redundancy in the code).
Visual perception, on the other hand, involves the evolution of an organism’s visual
system to match the structure of the world and the coding scheme provided by na-
ture. Unlike usual communication systems, the coding scheme (light reflection and
perspective projection) has not been designed a-priori to maximize the reliability
of the information transmitted about message features of interest to an organism
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(scene properties), nor to minimize the computational problems of decoding the
signals. It simply exists as a property of our environment, and the visual system
has to make do with what nature has provided. All of our experience attempting to
build artificial vision systems tells us that the computational problems of decoding
images are actually quite difficult.

0.3 The Bayesian formulation of the problem of perception
0.3.1 The Bayesian characterization of information

The basic idea behind the Bayesian approach is to characterize the information
about the world contained in an image as a probability distribution which charac-
terizes the relative likelihoods of a viewed scene being in different states, given
the available image data. The exact form of the distribution, called the “posterior”
conditional probability distribution, is determined in part by the image formation
process, including the nature of the noise added in the image coding process, and
in part by the statistical structure of the world. As we will see shortly, Bayes’ rule
provides the mechanism for combining these two factors into a final calculation
of the posterior distribution. The Bayesian approach distinguishes itself from other
statistical formulations of information by taking into account the contributions of
both factors to the specification of information. In particular, the approach is no-
table for its reliance on explicit models of world structure. While this forms the
basis for most attacks on the approach, we emphasize that modeling this aspect of
visual information is a fundamental necessity. and is always implicitly done, if not
explicitly.

Table 0.1 summarizes the Bayesian formalization of the decoding problem posed
to the receiver in a communication system. Referring back to our original discus-
sion of the four major components of a model of information, we have for visual
perception;

(1) A formal representation of the scene properties of interest — S. S might include such
things as surface shape, object motion, observer motion, the projected time of collision
between objects, and so on.

(2) A model of the structure of scenes which defines the prior probability distribution,
p(S). p(S) embodies the large number of statistical dependencies which exist between
scene properties.

(3) A model of image formation, which we write as a function applied to S, 7(S). 7 can
be thought of as an idealized model of image formation which incorporates the laws of
light reflection, refraction and emission as well as the laws of perspective projection.
More realistically, 7w could be modeled so as to take into account physical effects of
imaging such as blur, optical aberrations in the eye and sampling,

(4) A model of image noise, N, which we can think of as being added to the result of the
image formation function, I = 7(S) + N. It need not, of course, be strictly additive,
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Communication system Bayesian framework for perception
Elements of interest in messages Scene properties of interest

Structure of the Prior

message set P(S)

Coding Image Formation Posterior

Information 7(S) Likelihood pSinH
pS)
Noise Image Noise
N

Table 0.1 Column I shows the qualitative components of a communication
problem specification. Column 2 shows the corresponding formal
components within the Bavesian framework (see text for details of variable
and function meanings).

and, depending on what one is modeling as the input to the visual system, it may involve
complex models of noise induced at various stages in neural processing.

Sticking to our metaphor of perception as communication, we say that images,
I, are signals which provide information about transmitted messages, which are
taken to be specific configurations of scene properties, S. The posterior conditional
probability distribution p(S | I) , characterizes this information. If an image uniquely
specifies the scene (e.g. their is no uncertainty induced by noise), then the posterior
distribution is trivial, being zero for all scene configurations but the one actually
being viewed. More commonly, images have some ambiguity, and this is reflected
in the “spread” of probability over the space of possible scenes. The posterior
distribution depends on the structure of the set of possible scenes (p(S)), the image
formation function (7 (S)) and the noise added to images (N). Bayes™ rule specifies
a way to partially decompose the posterior into these parts. According to Bayes’
rule, the posterior is given by

pI|S)p(S)
p

For our purposes, we can treat p(I), the probability of occurrence of an image, as
a normalizing constant, so we have

pS|hH= (0.1)

p(S|1) o p(1|8S)p(S). (0.2)

p(1]S). foragiven value of S (a given scene), is a probability distribution specifying
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the relative probability of obtaining different images from that scene. It is a function
of the image formation function and the corrupting noise (thus incorporating two
of the components of information described above). p(1|S) is generally referred
to as the likelihood function for 8. p(S) we have described above, and is the prior
distribution on scene configurations S.

Equation (0.2) is the foundation of the Bayesian approach to visual perception.
It shows how to factor out the relative effects on image information of the coding
scheme and noise on the one hand, and the prior structure of the environment on
the other. Consider what the likelihood function and prior distribution represent
for problems of visual perception. The likelihood function reflects the noisiness of
the data and the loss of specificity implicit in the projection from three dimensions
to two. If the image were uncorrupted by noise and unaffected by optical distor-
tions, then p(I|8) would be non-zero only for those scenes which would project,
under perspective projection, to a given image I = /: that is, it would select a
set of candidate scene interpretations for a given image’. Noise has the effect of
spreading the likelihood function over a larger range of possible scenes. making
the information provided by an image about scene properties more unreliable. The
distribution p(S) is the prior probability of different collections of scene proper-
ties actually occurring in our environment. It embodies knowledge of the structure
of the environment which constrains the perceptual estimate of scene properties.
A good example of a prior constraint is the assumption that object motions tend
to be rigid. The rigidity constraint is often hard-wired into structure-from-motion
models, leading to an effective assumption that p(S) = 0 for non-rigidly moving
objects (Koenderink & van Doorn, 1975: Ullman, 1979: Bennett et al.. 1989). Other
examples of prior constraints are the smoothness constraints often used in computer
vision models (Ikeuchi & Horn, 1981: Julesz, 1971: Marr & Poggio, 1979: Yuille,
1989). Typically. when formulated in probabilistic terms they characterize particu-
lar probabilistic models of surfaces (Szeliski, 1989). (See chapter 5. by Yuille and
Biilthoff and chapter 8 by Belhumeur for complete discussions of the relationship
between smoothness constraints and Bayesian priors).

0.3.2 A tutorial example

In this section, we illustrate the Bayesian formulation of an information processing
problem with a simple example for which we can compute the posterior function
exactly, but which retains key similarities to real problems in perception. In our
example communication system (see figure (.2), the set of messages consists of four

" Transactionalist theory, a school of perceptual psychology popularized by Ames with “illusions” such as the
Ames’ room and Ames’ trapezoidal window, referred to the set of scenes which could project to a given image
or images as “eguivalent configurations™ (Ittleson, 1960)
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Fig. 0.2 The communication system for the shape sorter example. See text for description,

objects: a tetrahedron, a pyramid, a prism and a cube. Each object is a “message”.
The tetrahedron has four triangular sides, the pyramid has a square base with four
triangular sides, the prism has three square sides and two triangular sides, and the
cube has six square sides. Each of the square and triangular sides has the same shape
for all the objects. The transmitter selects objects for coding and transmission with
the probabilities given in table 0.2. These probabilities form the prior distribution
characterizing the structure of the message set, or what we have referred to for vision
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Prior distribution of objects
plobject)

tetrahedron 0.1

pyramid 0.3

prism 0.4

cube 0.2

Table 0.2.

as the structure of the world. The coding device used by the transmitter has two
stages. The first is like the toy for toddlers in which only certain three-dimensional
shapes fit through two-dimensional holes. The selected object is dropped in a box
and can fall through one of two slots; a triangle slot, whose shape matches the
triangular sides of all the objects, or a square slot, whose shape matches the square
sides of the objects. The shape of the side of an object which faces down determines
which slot an object falls through. For simplicity, we assume that each side of an
object has equal probability of facing down. The laws governing this device are
crudely analogous to the process of geometric projection in vision; thus, we refer to
the “output” of this stage of the coding device (which slot an object falls through)
as an object’s silhouette. The second stage of the coder sends a color signal to the
receiver based on the object’s silhouette: red if the silhouette is a triangle, and blue
if it is square. The final component of the system is a receiver, which we will take
to be a photodetector which is sensitive to the wavelength of light it absorbs. The
photodetector signals whether a red or blue light is received.

As a first step in our analysis of the information provided by the signals in this
system, let us ignore the color coding and treat the silhouettes as the received signal,
The problem for a receiver detecting these silhouettes is that they do not uniquely
determine the shapes of the objects selected by the transmitter, since, unlike the
child’s toy, two of the objects (the pyramid and the prism) can fall through either
of the two slots. For a given silhouette, therefore, there is more than one possible
message which could have given rise to the silhouette, and the information provided
by the silhouette is ambiguous and probabilistic. The information is characterized by
the posterior function, p(S|I) = p(object | silhouette), where object is a random
variable specifying the object chosen by the transmitter, and silhouette is a random
variable specifying the silhouette received as a signal. For now, we are assuming a
noiseless signal, so the posterior function is determined by the coding scheme and
the prior distribution of objects. Having specified the prior, we turn to a probabilistic
specification of the coding scheme.
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Likelihood function
p(silhouette | object)

Tetrahedron Pyramid Prism Cube
triangle 1.0 0.8 0.4 0.0
square 0.0 0.2 0.6 1.0

Table 0.3 For a given silhouette, the sum of the likelihood function taken over the
objects (within a row) is not 1, reflecting the fact that fixing the signal does not
make the likelihood function a probability distribution on set of possible messages.
Fixing the message, however, does make it a probability distribution on the set of
possible signals, as seen by summing within a column.

We use the likelihood function, p(I|S). to model the probabilistic properties
of the coding scheme. Since we have assumed that each side of an object, when
dropped in our imaginary coding box, has an equal probability of facing down, the
probability that an object will be coded as a given silhouette is simply the proportion
of sides of the object which have that silhouette’s shape. A simple calculation gives
the probabilities shown in table 0.3.

To obtain the posterior function, we combine the likelihood function and the prior
distribution using Bayes’ rule, giving

plobject | silhouette) oc p(silhouette | object) p(object). (0.3)

Table 0.4 summarizes the results of calculating the posterior function for all possible
signals and messages in our example. While both silhouettes allow three possible
interpretations of the object selected by the transmitter, a receiver which had to
choose one and be correct as often as possible would choose the object with the
highest probability conditional on the silhouette received: for a triangle, it would
be the pyramid, and for the square, it would be the prism.

We now turn to a consideration of the effects of noise on the posterior and consider
the full example system, including the color coder and the photodetector receiver. In
vision, we do not directly receive information about the geometrical shape of objects,
rather, the signal received by the retina is a more indirectly coded form of the shape
information than is given by silhouettes. In a similar way, the transmitter in our full
example codes objects in the form of the color of light it transmits. If there is no
noise in the coding or in the transduction of light by the photodetector, the posterior
for objects conditional on the color signal is equivalent to the one derived for a
silhouette signal, with red replacing triangle, and blue replacing square. Suppose.
however, that noise is added to the signal. either in the coder or in the photodetector,
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Posterior distribution
plobject | silhouette)

Triangle  Square

tetrahedron 0.2 0.0

pyramid 0.48 0.12

prism 0.32 0.48

cube 0.0 0.4

Table 0.4 For a given silhouette, the sum of the posterior function over the
different objects (within a column) is 1, reflecting the fact that fixing the
signal, makes the posterior a probability distribution defined over the
set of possible messages.

so that the mapping from silhouettes to received color signals is not one-to-one. We
then need to compute a different likelihood function, p(color | object), and hence
a different posterior, p(object | color). Assuming the color noise is independent
of the process used to select which silhouette matches an object, we can write the
likelihood function as

p(color | object) = p(color | silhouette = triangle)
x p(silhouette = triangle | object)
+ p(color | silhouette = square)
x p(silhouette = square | object). (0.4)

where p(color | silhouette) is determined by the color noise. Values of p(color
| silhouette) for the noise-free case and an example noisy case are tabulated in ta-
ble 0.5. If we use the likelihood function obtained in the noisy example, we obtain
the posterior function shown in table 0.6. Note that the noise has the effect of mak-
ing the posterior distribution more similar to the prior distribution of shapes. This
reflects the loss of reliability of the signal’s information induced by the addition of
noise. In the limit. as the noise increases, the posterior distribution approaches the
prior distribution showed in table 0.2. In the example we have described, the noise
has also changed the peaks of one of the distributions, so that the most likely inter-
pretations given our example noisy color signals are different from those obtained
with noise-free data (in fact the most likely interpretations given either signal are
the same, suggesting that a receiver which uses the strategy of picking the most
likely interpretation will do no better with the information provided by the received
signal than without),
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Noise-free color signal
plcolor | silhouette)

Kersten & A. Yuille

Noisy color signal
plcolor | silhouette)

Triangle Square Triangle Square
red 1.0 0.0 red 0.6 0.4
white 0.0 1.0 white 0.4 0.6
Table 0.5.

Posterior function for noisy color signal
plobject | color)

Red White
tetrahedron  0.12 0.08
pyramid  0.336 0.264
prism 0.384 0.416
cube 0.16 0.24
Table 0.6.

The example illustrates a number of points about the problem of visual perception
and the Bayesian approach to characterizing visual information. First, the form
of the received signal is not simply related to the form of the messages. Image
intensities are a coded form of what we “see” and are as qualitatively different
from scene properties as the color signal was from the nature of the objects in our
example. Of course, in our example the mapping from messages to signals was
quite simple. The same is not true for the mapping from scene properties to image
data. Second, both the lack of a one-to-one inverse mapping from images back to
scene properties and the presence of image noise make the information provided
by images about scenes inherently probabilistic. In our example, not only could
different objects fit through different slots in the coder, but noise further increased
the ambiguity of the received color signal. If we had included a stellate shaped object
in the message set and a similarly shaped slot in the coder, that particular silhouette
would provide unambiguous information about the object chosen as a message
(since only the stellate-shaped object would fall through it). The addition of noise
would impose some ambiguity on the final color signal. While searching for such
invariants is a good research strategy, we should not be surprised to find that few
existin images. Finally, just as in the example, the prior structure of the environment
plays a crucial role in determining the information provided by images about scene
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properties. In the example, treating the likelihood function as a characterization of
signal information would lead an observer to make irrational inferences (compare
tables 0.3 and 0.6) in that the maxima of the likelihood function occur for different
objects than the maxima of the posterior distributions.

0.4 Perception as unconscious inference
0.4.1 Bayesian models of inference

We have described the Bayesian framework as a language for specifying what in-
formation images provide about the world. From this perspective. the framework
provides a way to objectively specify the information content of images for the
estimation of scene properties or more generally for the performance of perceptual
tasks. Consideration of human perceptual performance, however, generally sug-
gests a somewhat different perspective: namely, the characterization of perception
as a process of unconscious inference, as suggested by Helmholtz (1925). From this
point of view, Bayesian probability provides a normative model for how prior knowl-
edge should be combined with sensory data to make inferences about the world’.
Specification of the functions p(I'|S) and p(S) form the basis of what would be an
“ideal" perceptual inference device. One more element is needed, however, to com-
pletely model an inference process: a specification of a decision rule for selecting
an estimate of S based on p(S | I). Common rules applied in the literature include
selection of the peak of the distribution (Maximum A-Posteriori. or MAP, estima-
tion) or selection of the mean of the distribution (Minimum Mean Squared-Error,
or MMSE, estimation). More general decision rules can be incorporated using cost
functions to weight the relative cost of making errors in an inference (see chapter 5.
by Yuille & Biilthoff, and chapter 9, by Freeman). A complete functional model of
an ideal perceptual inference device, then. consists of a model of the information in
images. as characterized by p(S | I). and a model of the decision rule to be applied
to this function to make inferences.

We make the jump from building ideal inference devices to modeling human
perception by recognizing that one can treat the human visual system as making
perceptual inferences on an implicitly assumed model of p(S|I), which we will
referto as py, (S | ) (Kersten, 1990: Knill & Kersten. 1991). This model incorporates
assumptions about image formation and the structure of scenes in our environment.
In some sense, one could say that a model of p,(S|I) (along with a model of
perceptual decision rules) characterizes the world to which the human visual system

" Classical Bayesian inference in the sciences interprets probabilities as degrees of belief. Jaynes (1986) has shown
that given some elementary and reasonable assumptions about how degrees of belief should be formulated. one
arrives at the probabilistic caleulus, or a class of monotonic derivatives of the calculus, as the appropriate way
to combine information to modify degrees of belief,
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Fig.().3 The Necker cube. The line drawin g canappear in one of two orientations, depending
on which face is seen in front, however, it always appears as a cube.

is “tuned” and in which humans would be ideal perceptual inference makers (see
chapter 6, by Knill ez al.). To demonstrate this, consider the example of the previous
section, and assume the presence of an observer viewing the outputs of the light.
Our hypothetical observer might implicitly (and incorrectly) assume that each of
the four objects was equally likely to fall into the shape sorter. this would lead the
observer to “perceive” the shape of objects based on a posterior function which has
the same form as the likelihood function (see table (.3), leading to more mistakes
than if the observer assumed the correct prior.

Terms like prior knowledge and inference suggest to many people the view that
perception is strongly influenced by cognitive factors. We do not mean to do so here.
While we readily acknowledge the possibility of cognitive effects on perception.
this is not what we mean in our conception of perception as inference. Much of what
we refer to as prior knowledge may be built into low-level, automatic perceptual
processes which do not have access to our cognitive database of explicit knowledge
about the world. For example, in some contexts. pior knowledge about the world
can be implicitly built into relatively simple filters for the estimation of scene
properties (Kersten ef al., 1987; Knill & Kersten, 1990). More generally, work
in neural networks has shown that many network models can be conceived of as
particular implementations of Bayesian inference (Golden, 1988: MacKay, 1991).
The prior knowledge in these cases is “represented™ by the connection strength
between cooperative computational elements.

The Necker cube provides a simple example of a probabilistic inference made
by the human visual system (see figure 0.3) which is classically “perceptual™ and
automatic. Though often used to illustrate the bistability of some percepts, the
more impressive phenomenon is the obvious one — that we see it as a cube at all.
Consideration of the ambiguity imposed by mapping a three-dimensional object
onto two dimensions shows that an infinite number of possible polyhedral shapes
could have given rise to an image of a Necker cube (just as multiple objects could
fall through the square slot in our toy example). The visual system selects as its
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estimate of the shape the most symmetric of the possibilities - a cube. As simple as it
is, this is an impressive demonstration of the visual system’s use of prior constraints
on object shape (the nature of the prior constraints needed for such a percept to be
accurate is discussed in chapter 3. by Richards er al.).

0.4.2 Bayesian theories and levels of explanation

The information processing approach to modeling perceptual inference typically
leads to theories about perceptual process; that is, about the architecture and al-
gorithms of the system which makes the inferences. This is true despite Marr's
prescription to build computational theories for perceptual problems before model-
ing the processes which implement the theories (Marr, 1982), One reason for this
state of affairs is that most researchers have not had available a formal framework for
building computational theories with enough specificity 1o usefully constrain mod-
els of process (more so, that 1s, than informal statements of principles). Moreover,
there is some confusion about the nature of what comprises a computational theory,
the term itself being rather vague. Marr was unclear as to whether a computational
theory should characterize the problems posed to a perceiving organism or some
aspects of an organism’s solution to these problems. At various times he seems to
have meant it to characterize one or the other (or both). In considering the Bayesian
approach as a framework for building what we think of as computational theo-
ries, we have found that a new conceptualization of Marr’s three-fold heirarchy of
levels of explanation (computational / algorithmic / implementation) has naturally
emerged which resolves the ambiguity. This is summarized in figure 0.4, In essence,
we split the computational level into two components: theories of information and
rational theories of inference . The former can be thought of as characterizing the
computational problems posed to an observer, while the latter characterizes the
computational aspects of an observer’s solution to these problems. Below the two
computational levels is the impementation level of explanation, which describe
properties of the processeses of perception. For our purposes here, we treat this as
one level, though it may usefully be partitioned into more, as Marr did. What is
notable about the formulation is that the Bayesian framework applies both to the
information level of description and to the rational level. By providing a common
language for building theories of both types, the framework supports a strong in-
teraction between theoretical analyses of information and the process of modeling
human perceptual behavior. Just as importantly, it provides the formal tools with
which to build theories at these levels without necessarily having to make recourse
10 lower levels of explanation. Ulumately, the levels must interact and constrain

We have borrowed the term “rational” to characterize Buyesian theories of inference (rom a related proposal by
Anderson (19911 i the context of explaimng cognitive funchion
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Fig. 0.4 The discussion in the text suggests that Marr's computational level of theory
for visual processes really consists of two parallel modes of explanation: theories of the
information available for perception and rational theories of the inferences made by the
visual system in the course of perception. The Bayesian framework provides the structure for
building both types of theory, with the addition of decision criteria for models of inference.
Theories of information constrain theories of inference, because they limit the reliability
with which inferences can be made. Both types of theories can suggest hypotheses for
the other, since, on the one hand, the information and constraints in our world are always
available to the visual system to use, and on the other hand, information and constraints
employed by the visual system are likely to have evolved to match those available in the
world. While we have focused on the two upper levels of theory-building, theories at the
implementation level clearly interact strongly with those at the level of rational inference,
mutually constraining and informing one another.

one another, but it is important for the development of perceptual models that we
be able to build predictive theories of human performance at the rational level. This
level suggests its own questions and modes of explanation which cannot be easily
characterized at other levels.

0.5 Conclusions

A number of arguments support using the Bayesian framework for modeling percep-
tion. First, it provides a normative framework within which to formulate objective
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theories of the information provided by images in our world for different perceptual
tasks’. The form of the function p(S|I) which describes our environment provides a
theoretical absolute limit on the reliability with which an observer can make percep-
tual inferences (Kersten, 1990). A function made up of strongly peaked posterior
distributions. p(S|1 = /), supports inferences which are likely to be correct or to be
made with small errors, while one composed of broad distributions does not. Sec-
ondly, formulation of computational models within the framework requires making
explicit many assumptions which are often left implicit. It is, we feel. the natural
framework in which to formulate computational descriptions of many problems. In
particular, it distinguishes between functionally different aspects of the computa-
tional problems facing an observer: The nature of the uncertainty in the data for
performing a perceptual task and the prior constraints on scene structure which serve
to reduce this uncertainty. Thirdly, the framework provides a means for formalizing
experimentally testable hypotheses about functional aspects of human perceptual
processing. Building objective theories of the information available for perception
and theories of human perceptual performance within the same framework sup-
ports a strong degree of cooperation between formal, mathematical analyses and
psychophysical experimentation.

We have attempted to introduce the main concepts of a Bayesian framework for
modeling perception and have highlighted three of its features: that it provides the
tools for a full mathematical description of the problems of perception, that these
same tools may be used to build functional models of perceptual performance,
and that it suggests a new conceptualization of perception which provides a novel
structure for asking questions about perceptual function. We have argued for the
usefulness of the framework as a paradigm for investigating and modeling human
perception, but have done so at a fairly abstract level, never actually discussing
particular applications of the approach to real problems in perception. The success
or failure of such applications will be the ultimate test of the framework's usefulness
and will help define the domains to which it is best suited. We also have not elucidated
many of the specific problems which arise from considering perception within
a Bayesian framework. The remaining chapters of the book flesh out these gaps
and should leave the reader with a greater appreciation and understanding of the
approach and its application to visual perception.

¥ Juynes (1986) has shown that some basic quulitative criteria on how measures of beliel are enough 1o derive
the probabilistic calculus (or some monotonic derivative of it) as the appropriate mechanism for combining and
manipulating degrees of belief. We refer the reader to his paper for a proof and discussion and simply not that
the criteria he proposes for degrees of beliel ure exactly those which one would want 1o apply to measures of
information.
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