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Human visual object decisions are believed to be based on a hierarchical organization of stages
through which image information is successively transformed from a large number of local
feature measurements with a small number types (e.g. edges at many locations) to increas-
ingly lower-dimensional representations of many types (e.g. dog, car, ...). Functional utility
requires integrating a large number of local features to reduce ambiguity, while at the same
time selecting task-relevant information. For example, decisions requiring object recognition
involve pathways in the hierarchy in which representations become increasingly selective for
specific pattern types (e.g. boundaries, textures, shapes, parts, objects), together with increased
invariance to transformations such as translation, scale, and illumination. Computer vision ar-
chitectures for object recognition and parsing, as well as models of the primate ventral visual
stream are consistent with this hierarchical view of visual processing. The hierarchical model
has been extraordinarily fruitful, providing qualitative explanations of behavioral and neuro-
physiological results. However, the computational processes carried out by the visual hierarchy
during object perception and recognition are not well-understood. This chapter describes how a
Bayesian, inferential perspective may help to understand the organization of visual knowledge,
and its utilization through the feedforward and feedback flow of information.

*To appear in: The New Cognitive Neurosciences, 5th Edition. Please do not cite without permission.

It takes just one quick glance at the picture in Fig-
ure 1A to see the fox, a tree trunk, some grass and
background twigs. This is a remarkable achieve-
ment in which the visual system turns a massive set
of highly ambiguous local measurements, (Figure
1B), into accurate, and reliable identifications. But
that is just the beginning of what vision enables us
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to do with this picture. With a few more glances,
one can see a whole lot more: the shape of the fox’s
legs and head, the varying properties of its fur, guess
what it is doing, whether it is young or old. The
ability to generate an unbounded set of descriptions
from a virtually limitless number of images illus-
trates the extraordinary versatility of human percep-
tion.

This chapter focuses on the following question:
What knowledge representations and computational
processes are needed to achieve reliable and versa-
tile object vision? Although we are far from com-
plete answers, there has been substantial progress
in the overlapping fields of perceptual psychology,
computer vision/robotics, and visual neuroscience.
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Figure 1. A. This figure illustrates two problems. 1)
How can local measurements made from small patches
(B), using neurons with small receptive fields, be inte-
grated to recognize objects and patterns (e.g. fox, tree
trunk, grass)? 2) How does the visual system support a
limitless number of descriptions of a single scene? An-
swers need to account for flexible access to information
of various types over a range of spatial scales, such as the
various edge and textural properties of local regions B,
the shape of parts C, and intermediate- and higher-level
concepts such as “head” D, respectively. There is a boot-
strapping problem in that the accurate interpretation of
any local patch is ambiguous without knowledge of the
rest.

In all three fields, theories of representations of
visual knowledge and the processes acting on them
are constrained by: 1) functional behaviors or tasks,
and their priorities; 2) the statistical structure of the
visual world, and consequently in images received;
3) algorithms and knowledge structures for getting
from images to behaviors; and 4) neurophysiologi-
cal (or hardware) limitations on what can be com-
puted by collections of neurons (or components and
circuits).

There has been considerable growth in 4), our
knowledge of the neurophysiology and anatomy of
the primate visual system at the level of large-scale
organization of visual areas and their connections
(Kourtzi & Connor, 2011; Kanwisher, 2010), and
the finer scale level of cortical (Markov et al., 2013;
Callaway, 1998; Lund et al., 2003) and sub-cortical
neuro-circuitry (Guillery & Sherman, 2002). The
larger picture is that visual processing involves pro-
cessing within a visual area (both laterally and

across laminae), and hierarchical – feedforward and
feedback – processing between areas with various
feature selectivities (Figure 2).
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Figure 2. A. Schematic of macaque monkey visual cor-
tex. The colored rectangles represent visual areas (see
Felleman & Van Essen (1991)). The gray lines show
the connections between areas, with the thickness propor-
tional to estimates of the number of feedforward fibers.
Areas in warm and cool tones belong to the dorsal and
ventral streams, respectively. (Figure from Wallisch &
Movshon (2008); see also Lennie (1998)) B. Feedforward
and feedback connections represent transmission of feed-
forward and feedback signals between visual areas. Lat-
eral (also called “horizontal”) organization within areas,
representing features of similar types and level of abstrac-
tion.

However, despite growth in our knowledge of the
visual brain, there remains a gap in our understand-
ing of how the biology of vision enables common
behaviors.1 An immediate problem faced when be-
ginning such an analysis is that the large-scale sys-
tems nature of the problem makes it di�cult to em-
pirically test theories of behavior at the level of neu-
rons. One strategic solution is to temporarily ig-
nore the details of the neurophysiology and neuro-
circuitry (i.e., 4) above), and try to understand a nar-

1 Even complete knowledge of neural network connec-
tivity and dynamics would be insu�cient to explain vi-
sual function. For example, a complete description of
spatial-temporal switching of the billion plus transistors
in a video game console would provide little insight into
how these patterns relate to game goals, algorithms or be-
havior.
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rower problem–what are the representations, learn-
ing principles, and types of computations required
for competent visual behavior?

A key idea, inspired by both computer vision re-
search and quantitative studies of human behavior,
is that vision is fundamentally inferential. More
specifically, visual perception involves processes
of statistical inference, which can be as simple as
heuristic rules, to more complex, probabilistic pro-
cesses. Further, methods of statistical inference can
also be applied, specifically through machine learn-
ing techniques, to understand how hierarchical rep-
resentations of feature types are constrained by the
statistical regularities in natural images.

In the next section, we review basic concepts of
statistical inference, focusing on Bayesian decision
theory. In subsequent sections, we discuss the func-
tions of within-area (focusing on lateral representa-
tions), feedforward, and feedback visual processing
from an inferential perspective, with a view towards
a better understanding how the visual cortical archi-
tecture may support human visual object perception
and recognition.

Vision as statistical
inference

How can one begin to model vision as inference?
To begin, we need to specify the task requirements:
what should be estimated, and the image informa-
tion to get there. The number of models to get
from input to output can be very large, suggesting
the strategy of first characterizing the requirements
for optimal inference, and then interpreting actual
performance in terms of approximations (see ideal
observer analysis below). Bayesian inference the-
ory provides a well-developed set of concepts for
modeling optimal inference, including discrimina-
tive and generative probability models, and decision
rules.

In its basic form, Bayesian theory provides math-
ematical tools for estimating hypotheses with po-
tentially complex interdependencies (e.g. causal re-

lationships), given varying degrees of uncertainty
and importance. Bayesian inferences are based on
knowledge represented by the joint probability dis-
tribution, p(s1, s2, . . . , I1, I2, . . .) – a model of the
probability of descriptions (“explanations” or “hy-
potheses”) s = s1, s2, . . ., together with the pat-
terns of image measurements (or “features”) I =
(I1, I2, . . .).

The joint distribution, however, can be quite
complex, reflecting causes of image patterns that
are often subtle and deep. For example, the de-
scriptions of the fox in Figure 1 included inferences
of category (which influence 3D object shape, and
thus measurements available in the image projec-
tion), subcategory (baby fox, which a↵ects the size
and contours of the head), material (fur properties,
together with shape and lighting produce image tex-
ture), relative depths (the tree occludes part of the
fox, which in turn occludes background), and pose
(the image of fox’s head is to the right of the body).
This suggests a causal, top-down hierarchical struc-
ture, with variables representing abstract concepts
at the top, to variables at the bottom representing
local features shared among many objects.

Formally, the structure of images can be for-
mulated in terms of probability distributions over
structured graphs (Lauritzen & Spiegelhalter, 1988;
A. Yuille, 2010). The graphical language helps
capture the causal structures and the dependen-
cies/independencies between causes. The nodes are
random variables that represent hypotheses about
events, objects, parts, features, and their relations.
The links express the statistical dependencies be-
tween nodes. The links can be directed, represent-
ing causal influence, or undirected. Inference and
task flexibility is achieved by fixing values of nodes
based on local image measurements, or decisions
made elsewhere in the system (e.g. through “prim-
ing”), together with integrating out variables that
are unimportant for a given task (for a simple ex-
ample, see Figure 3A) 2.

2 Until the advent of computers, it was di�cult to
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Optimality is defined by a criterion (e.g. “min-
imize average error”) which determines a decision
rule (e.g. “pick the values of the unknowns that
maximize the posterior probability”) 3.
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Figure 3. A. A simple graph illustrating the generative
constraints on incoming data. See main text. B. More
than one combination of causes s, could explain local im-
age measurement, I1. Optimal perception seeks an expla-
nation, i.e. values of s1 or s2 that give the most probable
explanation for how the image measurement could have
been generated. For example, Bayes optimal calculations
show that without feature I2, s1 takes on one value, but
with a measurement of I2, it takes on a di↵erent value.
Pearl (1988) calls this “explaining away”. C. Bayesian
coarse-to-fine. Di↵erent “models”, m, can be di↵erent
functions of the parameters s, which in turn lead to dif-
ferent image features. An initial, “quick and dirty” visual
inference may be at the top level (e.g. it is a “fox”) ig-
noring shape details (but using for example features from
the wooded context, fur color, “features of intermediate
complexity” or “fragments”, that may be su�cient). Fix-
ing the hypothesis of “fox” can be followed by reliable
inferences at a lower-level (e.g. “shape of the head of the
fox”).

Bayesian algorithms can be discriminative,
based on a model of the posterior: p(s|I) =
p(s, I)/p(I) – the probability of a description s =
s1, s2, . . ., given a pattern of image measurements
(or “features”) I = (I1, I2, . . .). Discriminative al-
gorithms are bottom-up, and do not incorporate ex-
plicit models of how image patterns are caused by
objects. For example, in it simplest form, a discrim-
inative algorithm could be a look-up table which
maps an image pattern to the most probable hypoth-
esis, which in neural terms is not that di↵erent from
a reflex (Purves & Lotto, 2003)4.

Bayesian algorithms can also be generative.
Generative models rely on knowledge in the like-
lihood, p(I|s) which specifies how an image re-
sults from causes or explanations s, and a prior
p(s). These probabilities are related to the poste-
rior through Bayes rule: p(s|I) = p(I|s)p(s)/p(I).
Generative algorithms make explicit use of top-
down generative processes, in which high-level hy-
potheses are used to simulate the values of lower-
level nodes, ultimately generating a prediction of I
(Mumford, 1992; A. Yuille & Kersten, 2006). Gen-
erative models provide a number of advantages. For
example, by elaborating the structure of the like-
lihood, computational studies have shown that a
generative process can improve recognition through
“explaining away”, useful for both learning (Hin-
ton, 2009; Zeiler et al., 2011), and inference applied
to image parsing (Tu et al., 2005). Generative al-
gorithms predict appearances in time (e.g. Bayes-
Kalman; Burgi et al., 2000), and cope more e�-
ciently with a wider range of variability, such as
the virtually unlimited ways in which objects can be
composed (A. L. Yuille & Mottaghi, 2013; Chang et

handle Bayesian calculations beyond a few dimensions.
Today, computer vision algorithms find Bayes optimal
solutions for problems involving thousands of dimen-
sions. Optimization methods include regression, vari-
ous message-passing algorithms such as EM, and belief-
propagation. It is largely an open question if and how
such algorithms could be implemented in a neurally plau-
sible fashion

3 Bayesian decision theory generalizes “integrating
out” by introducing a loss (or utility) function to allow
for relative costs of imprecision in the estimation of var-
ious contributing values of si. Optimality is then defined
as maximizing utility (or minimizing risk) (Maloney &
Zhang, 2010; Geisler & Kersten, 2002)

4 A discriminative algorithm can implement a decision
rule with no explicit use of probabilities. For example,
with a large number of samples, a rule to minimize empir-
ical risk (Schölkopf & Smola, 2002) becomes equivalent
to minimizing Bayes risk, as discussed in D. Kersten et
al. (2004).
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al., 2011), discussed more below.
Computer vision studies have shown discrimina-

tive and generative models can be combined (Tu et
al., 2005)–an algorithmic strategy similar in spirit
to two-stage processing accounts of human visual
recognition, in which an initial, fast decision about
the “gist” of a scene narrows the space of specific
objects to match to the image (Bar, 2003).

Bayesian probabilistic methods have been ap-
plied in a number of quantitative studies of human
visual behavior. There is a long history to study-
ing human perception (and neural responses) using
“ideal observer analysis” (Gold et al., 2009). Here
one makes quantitative comparisons between what
an ideal (Bayesian) observer can achieve with hu-
mans or neurons (Geisler, 2011; Trenti et al., 2010).
A strategic benefit of ideal observer analysis in stud-
ies of human behavior is that it helps to distinguish
perceptual limitations inherent to the information
processing problem from limitations of the neural
mechanisms (cf. Weiss et al., 2002; Eckstein et al.,
2006).

Quantitative behavioral experiments have shown
near optimality or ideal-like behavior in a variety of
domains, including visual cue integration (Jacobs,
1999), visual motor control (Orban & Wolpert,
2011; Wolpert & Landy, 2012), learning (Green et
al., 2010), and attention (Chikkerur et al., 2010).
For reviews, see Geisler (2011); D. J. Kersten &
Yuille (2013); Vilares & Körding (2011). Find-
ings of optimal behavior have raised the question of
whether neural populations within the brain explic-
itly represent and compute with probabilities, e.g.
using information about both the mean and covari-
ance of perceptual variables (cf. Koch et al., 1986;
Ma, 2012; Ganguli & Simoncelli, 2011; Ma, 2010;
Beck et al., 2011; Ma et al., 2006, 2008; T. S. Lee
& Mumford, 2003; Knill & Pouget, 2004; Zemel &
Pouget, 1998).

Bayesian methods applied to graphical models
have provided a unified framework within which to
understand generative and inverse inference, as well

as statistical learning (Jordan & Weiss, 2002). And
while it isn’t always practical to develop a quantita-
tive model for a complex visual function, the basic
concepts provide a common language for describ-
ing how image representations with an area might
be discovered from natural image regularities, how
complexity is managed, and how reliable, flexible
decisions may be made through the combination of
feedforward and feedback flow of cortical informa-
tion.

Representations and
computations in visual

hierarchies

In the following three sections, we discuss
within-area, feedforward and feedback computa-
tions from an inferential perspective, with particular
attention to how lateral/within-area and between-
area (feedforward and feedback) processes may re-
late to primate vision. Because most relevant re-
search has been on early retinotopic visual areas,
our examples focus there. The computations and
surface representations in early visual cortex may
be more complex than traditionally thought, making
V1 a good test-bed for ideas regarding hierarchical
functions generally (T. S. Lee, 2003; Olshausen &
Field, 2005; Gilbert & Sigman, 2007).

Within-area representations

Cortical maps are a fundamental, large-scale
property of lateral, within-area cortical organiza-
tion with a well-established empirical and theoret-
ical history (Mountcastle, 1997; Hubel & Wiesel,
1977; Barlow, 1981). Specifically, the columnar or-
ganization within a visual area reflects the require-
ment that units representing similar image features
should be nearby on the cortical surface (Durbin &
Mitchison, 1990). This arrangement is believed to
provide the basis for perceptual organization, for ex-
ample to group local edges into object boundaries.
The presumption is that local features of a similar
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type can be more easily linked over cortical space.
A given area represents spatially organized informa-
tion of a similar type and level of abstraction (Con-
nor et al., 2007; Orban, 2008). Are there natural
image regularities that support the evolution, devel-
opment, and adult plasticity of lateral, within-area
feature representation? If so, what theoretical learn-
ing principles might help to explain the discovery
and representation of regularities? How do the task
requirements of object perception constrain repre-
sentations?

Insight comes from computational studies that
have shown how structured image knowledge can
be discovered, through “unsupervised” as well as
task-based learning (e.g. “supervised” learning)
from collections of natural images. Such “discover-
ies” in an organism presumably arise through evolu-
tion and development of the visual system through
exposure to natural images, as well as to their be-
havioral outcomes. It makes sense that early visual
features would be more general-purpose, involv-
ing representations shared among many objects, and
thus more strongly constrained by the statistical reg-
ularities in natural images, discoverable through un-
supervised learning. As one moves up the visual
hierarchy, the contingencies of primary tasks be-
come more important. This may account for mul-
tiple parallel pathways (Nassi & Callaway, 2009;
Freiwald & Tsao, 2010; Beauchamp et al., 2002),
and the divergence, following V1 and V2, into mul-
tiple visual areas in which di↵erent causal contribu-
tions are discounted (integrated out) based on di↵er-
ent task requirements. Such specialization would be
constrained through adaptations based on outcomes
(e.g. task-based or reinforcement learning) across
phylogenetic and ontogenetic time scales.

Unsupervised learning of feature representa-
tions. An early idea was that, in its simplest form,
N discrete levels (or areas, or layers of neural units)
are required to detect Nth-order image regularities.
With such a system in place, vision operates in a

feedforward manner in which progressive conjunc-
tions of features are detected, eventually leading to
the detection of whole objects. Barlow (1990) sug-
gested that mechanisms for learning Nth-order im-
age regularities could rely on the detection of “sus-
picious coincidences” in the combinations of input
features (i.e., test whether p(s1, s2) >> p(s1)p(s2),
and if so recode to remove this dependency). Some
coding could be “hard-wired”, and modulated or
built during early development. At the behavioral
level, it has been shown that human adults can learn,
without supervision, part combinations by detecting
co-occurence of features (Orbán et al., 2008; Fiser
et al., 2010).

There have been a large number of computational
studies aimed at explaining the neural population
architecture in V1 in terms of e�cient codes that
exploit the regularities in natural images. Neural
response properties, such as orientation and spatial
frequency tuning in V1 neurons, are consistent with
a sparse coding strategy adapted to the statistics
of natural images (Olshausen, 1996; Hyvärinen,
2010). In addition, neurons in primary visual cortex
show non-linear divisive-normalization behavior in
which responses are inhibited by contrast variation
outside the classical receptive field. Divisive nor-
malization results in a reduction of statistical depen-
dencies (Schwartz & Simoncelli, 2001), providing
an e�cient representation potentially useful for dis-
covering (additional) suspicious coincidences. Re-
cently, Ziemba et al. (2013) developed a texture
model based on high-order statistical dependencies
in natural images that could account for selectivities
in both macaque and human V2.

Purely bottom-up, unsupervised feature learning
typically ignores task requirements (i.e. what to
discount) and eventually the behavioral end-goal of
a visual pathway needs to be taken into account5.

5 Discounting can be achieved through unsupervised
learning. Cadieu & Olshausen (2012) show unsupervised
learning of invariances of form by factoring out contribu-
tions from motion.
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However, some task requirements are general, sug-
gesting that certain kinds of information can be dis-
counted early on.

Generic task constraints on early representa-
tions. It is believed that early vision involves both
contour- and region-based linking (Grossberg &
Mingolla, 1985; Lamme et al., 1998; T. S. Lee,
2003; Roe et al., 2009, 2012). For contour fea-
tures, conditional probabilities, fit with natural im-
age statistics, predict aspects of human contour per-
ception, such as the Gestalt property of “good con-
tinuation” – nearby contour elements tend to have
similar orientations (Geisler & Perry, 2009; Elder
& Goldberg, 2002). Region-based grouping relies
on the prior assumption of piece-wise smoothness
in low- and higher-order intensive attributes (i.e.
texture; Shi & Malik, 2000). The assumed function
of edge- and region-based grouping is to compute
surface representations that are more reliably asso-
ciated with object than image properties, providing
a front-end to a variety of object-based tasks, in-
cluding recognition (Marr, 1982). And a first step
would be to begin the process of discounting causes
of image patterns that are not needed.

The accurate inference of illumination level and
direction is low priority for both “what” and “how”
tasks, which care primarily about objects and sur-
faces. This suggests that at least some components
of illumination variation would be discounted early
in the visual system. This is consistent with retinal
lateral inhibition filtering out slow spatial gradients
(presumed due to illumination), and emphasizing
edges (presumed due to surface changes). However,
illumination e↵ects are complicated: slow gradients
can also be caused by shape, and simple filtering
neither accounts for human perception of bright-
ness (Knill & Kersten, 1991; Kingdom, 2011), nor
provides accurate reflection estimation in computer
vision applied to natural images (Tappen et al.,
2005).

This problem is naturally cast in terms of

Bayesian inference, where the generative knowl-
edge is contained in the image formation model, I =
f (E,R, S ) and spatial priors on illumination (E),
reflectance (R), and shape (S )–spatial maps called
“intrinsic images” (Barrow et al., 1978). Concep-
tually, a Bayesian model would use a posterior
proportional to the product of a likelihood func-
tion p(I � f (R, S , E)), and priors that character-
ize the spatial regularities in the natural patterns of
reflectance, shape, while discounting illumination
through integration (see Freeman, 1994). While
computing intrinsic images from natural images can
be done in special cases, it nevertheless remains a
challenging problem (Grosse et al., 2009; Barron &
Malik, 2012).

Perceptual evidence for human computation of
an intrinsic image for reflectance comes from hu-
man lightness judgments which are more strongly
correlated with reflectance than image intensity or
contrast. The classic Craik-O’Brien lightness illu-
sion, shown in the upper middle panel of Figure 4A,
illustrates this. Regions with identical physical in-
tensities appear to have di↵erent lightnesses. The
functional interpretation is that the illusion is due
to a mechanism designed to produce an estimate of
surface reflectance, based on the assumption that re-
flectance changes are often abrupt, and illumination
changes tend to be gradual (Figure 4B).

fMRI evidence for processes involved in com-
puting a lightness map in human V1 and V2 is
shown in Figure 4A (Boyaci et al., 2007). Activ-
ity in localized regions of visual cortical areas V1
and V2 (distant from the central edge) respond to
a perceived change in lightness in the absence of
a physical change in intensity (see lower panels in
Figure 4A). While purely lateral computations have
been invoked to explain this kind of “filling-in”,
it has also been shown that human V1 response
to lightness change is also sensitive to perceptual
organization of occluded surfaces, suggesting that
top-down feedback may be involved (Boyaci et al.,
2010).
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Figure 4. A.The upper middle panel shows a classic il-
lusion known as the Craik-O’Brien e↵ect. Away from the
vertical border, the left and right rectangles have the same
luminance, as indicated by red line which shows how light
intensity varies from left to right. The interesting percep-
tual observation is that the left rectangle looks darker than
the right. In fact, there is little di↵erence between the ap-
pearance of a real intensity di↵erence (upper left), and
the illusory one. The lower graphs show that voxels in
both V1 and V2 respond to apparent changes in lightness
almost as strongly as real changes, as compared with a
control. B. An undirected graph (Markov Random Field)
can be used to formulate prior probabilities representing
lateral, spatial statistical dependencies for contours and
surface properties such as reflectance (cf. Marroquin et
al., 1987; Kersten, 1991).

In addition to allowing for illumination variation,
object recognition has the additional requirement
that variations due to position and depth need to be
discounted. We discuss within-area computations
supporting invariant recognition in the later section
on feedforward computations.

Learning hierarchically organized area repre-
sentations for recognition. One can use the end-goal
of object classification as a constraint on learning
feature hierarchies through successive, top-down
categorization of intermediate-level features. Here
the invariance requirements are built into the choice
of what distinguishes the top-level training classes.
The basic principle is to learn diagnostic features
(such as “fragments” or “features of intermediate
complexity”) that maximize the information for dis-
tinguishing object classes (Ullman et al., 2002). Hu-

mans and non-human primates seem to learn such
features (Harel et al., 2007; Lerner et al., 2008;
Hegdé et al., 2008; Kromrey et al., 2010). To build
a feature hierarchy one applies this principle at the
highest level to learn high-level features that opti-
mally distinguish object classes. At the next level
down the principle is again applied to learn lower-
level features that distinguish the previous features
learned, and so forth (Epshtein & Uliman, 2005).
The task requirement of what to discount is built
into the a priori selection of the training classes to
be distinguished. Simulations have shown examples
that once the features have been learned, accurate
object recognition and localization can be achieved
with one forward pass followed by one backward
pass through the hierarchy (Epshtein et al., 2008).

Learning object compositions to manage image
complexity. Compositionality refers to the hu-
man ability to construct hierarchical representa-
tions, whereby features/parts are used and shared
to describe a potentially unlimited number of rela-
tional compositions (Geman et al., 2002). It is ar-
gued that without such a generative structure un-
derlying scene and object compositions, we could
not account for the e�ciency and versatility with
which humans can acquire and generalize visual
knowledge. There is also evidence that humans
exploit compositionally when learning new pat-
terns (Barenholtz & Tarr, 2011). One aspect of com-
positionality is the ability to represent spatial rela-
tionships between parts, an idea with an early his-
tory (Waltz, 1972; Marr & Nishihara, 1978; Bieder-
man, 1987; Hummel & Biederman, 1992). A sec-
ond aspect, consistent with current models of pri-
mate recognition, is the idea of “reusable” features
or parts, where lower levels have only a few fea-
ture types (e.g. edges), but these can be combined
in many ways to make compositions of parts with
increasing specificity at higher levels.

An underlying compositional structure to the vi-
sual world suggests that learning should exploit that
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assumption, and computer vision work has demon-
strated unsupervised learning of levels of reusable
parts from natural image ensembles which they then
apply to multi-class recognition (Zhu, Chen, Tor-
ralba, et al., 2011; see Figure 5).

Level 1
Level 2

Level 3

Level 4

Level 5

Figure 5. A. Examples of the mean shapes of visual
concepts automatically learned for multiple objects with
part sharing between objects (Zhu, Chen, Torralba, et al.,
2011; Zhu, Chen, & Yuille, 2011). The specificity and the
number of types of features increases as one goes up the
hierarchy, consistent in general terms, with the progres-
sion of neural selectivities as one moves up the ventral
stream.

Feedforward computations

Invariant object recognition by the ventral
stream requires discounting spatial position and
size (Fukushima, 1988; Rolls & Foldiak, 1993;
Riesenhuber & Poggio, 1999; DiCarlo et al., 2012).
The basic feedforward computations are assumed to
be the detection of conjunctions of features that be-
long together as part of an object, while at the same
time discounting, through disjunction (which can be
viewed as an approximation for “integrating out”),
sources of variation, including position and scale.

It has been argued that a hierarchy of multiple
areas is required to achieve functional invariance
given the biological properties of neurons and their
connections (Poggio, 2011). In this account, dis-
counting is achieved incrementally through levels of
the ventral stream, through the operation of AND-

like (to detect feature conjunctions) and OR-like
operations (to discount variations in position, size)
over levels (Zhu et al., 2010), via simple and com-
plex type cells respectively (Riesenhuber & Poggio,
1999).

During the first feedforward pass, information
necessarily gets left behind in the race to quickly
and accurately draw from a relatively small set of
high priority, categorical hypotheses. But “no going
back” requires strong a priori architectural assump-
tions regarding what constitutes high priority end-
goals, as well as a strategic balancing of the trade-
o↵ between selectivity and invariance. Invariance
is achieved at the cost of loss of information–too
much loss and categories become indistinguishable;
too little, and there are too many object types.

Using compositions. Compositional arguments
may help to answer the question of why a hierar-
chical visual architecture desirable. A. L. Yuille
& Mottaghi (2013) conjecture that the key prob-
lem of vision is complexity. The visual system
needs to be organized in such a way that it can
represent a very large number of objects and be
able to rapidly detect which ones are present in an
image. They demonstrate by mathematical analy-
sis that this can be achieved using compositional
models which are constructed in terms of hierar-
chical dictionaries of parts (see Figure 5). There
are two key issues. Firstly, this visual architec-
ture exploits part sharing between di↵erent objects
which leads to great e�ciency in representation and
speed of detection. The lower-level parts are small
and are shared between many objects. The high-
level parts are larger (are composed from lower-
level parts) and are shared less because they are
more specific to objects. Secondly, objects are rep-
resented in a distributed hierarchical manner where
the positions, and other properties, of the high-level
parts are specified coarsely while the low-level parts
are specified to higher-precision. This “executive-
summary principle”, combined with part-sharing,
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can lead to exponential gains in the number of ob-
jects that can be represented, and the speed of recog-
nition. For these types of models (based on Zhu,
Chen, Torralba, et al., 2011) recognition is per-
formed by propagating up hypotheses about which
low-level parts are present to obtain an unambigu-
ous high-level interpretation. Top-down processing,
discussed in the next section, can be used to remove
false low-level hypotheses (using a high-level con-
text).

We noted at the beginning the extraordinary re-
liability and versatility of human vision, in its abil-
ity to respond both to challenging input (partially
hidden objects, confusing background clutter, cam-
ouflage) and diverse task demands, such as the fox
description example. What if the information for
a low-level hypothesis (e.g. precise object bound-
ary location, or the direction of movement of a lo-
cal edge) is not su�ciently reliable from a single
forward pass? What if a task needs information not
present or easily computable within top-levels of the
hierarchy? Earlier we noted some of the compu-
tational advantages of generative models in resolv-
ing residual ambiguity. The next section discusses
human behavioral and neuroimaging experiments,
based primarily on the e↵ects of context on local
decisions, that are consistent with cortical feedback
computations.

Feedback computations

Most interpretations of top-down visual pro-
cesses have focused on selective attention, which is
viewed as feedback that improves sensitivity at at-
tended locations and/or features (Desimone & Dun-
can, 1995; Noudoost et al., 2010; Petersen & Pos-
ner, 2011). Top-down (or “endogenous”) visual at-
tention is typically interpreted as selective tuning in
which information is routed through the visual pro-
cessing hierarchy to amplify some features relative
to others. In particular, Tsotsos et al. (1995) ar-
gues that attention acts to optimize visual search for
features through a top-down hierarchy of winner-

take-all processes. A Bayesian perspective empha-
sizes preservation of information about uncertainty
about hypotheses, and its sequential reduction by
message-passing between units and areas (T. S. Lee
& Mumford, 2003). In addition, the diversity of vi-
sual descriptions suggests flexible access to hierar-
chically organized information. While there is no
direct evidence, at this time, for neural populations
representing hypotheses rather than decisions, or
for probabilistic computations (as in message pass-
ing) (Lochmann & Deneve, 2011), there are behav-
ioral and neuroimaging results that are suggestive of
Bayesian top-down computations down the cortical
hierarchy. We briefly describe some of them.

Coarse-to-fine inferences. A basic lesson learned
from computer vision is: to be certain about a lo-
cal region of a natural image requires knowledge of
the whole (Figure 1B). Local perceptual decisions
can be automatic, constrained by spatial or temporal
context (as in priming or prior learning, cf. Hsieh et
al. (2010)) or be consciously task driven and speci-
fied by a higher-level “executive”.

Automatic (and executive) coarse-to-fine infer-
ence can be modeled as an initial high-level de-
cision which “fixes” the value in the upper level
of a hierarchical model, constraining subsequent
lower-level decisions (Figure 3C). An optimal de-
cision restricted to a high level requires integrating
out intermediate-level parameters. Several behav-
ioral results are consistent with Bayesian coarse-to-
fine computations over a simple hierarchical graph
structure (Knill, 2003; Körding et al., 2007; Wozny
et al., 2010; Wu et al., 2008; Stocker & Simoncelli,
2008). For example, Wu et al. (2008) have shown
that human velocity discrimination performance is
consistent with an initial classification of motion
type (rotation, expansion, translation).

Does feedback enhance or suppress feature rep-
resentations?. There are several ways in which
top-down signals could change the neural represen-
tation of the probability distributions. Top-down
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processes may enhance or suppress low-level fea-
tures consistent with a descriptions or hypotheses
at higher levels (Mumford, 1992; Rao & Ballard,
1999; T. S. Lee & Mumford, 2003; A. Yuille &
Kersten, 2006; Friston & Kiebel, 2009; Spratling,
2012). Enhancement is consistent with neurophysi-
ological and brain imaging studies that have demon-
strated that perceptual grouping is correlated with
the amplification of neural responses throughout the
visual hierarchy (Kourtzi et al., 2003; Roelfsema,
2006). Enhancement is also consistent with the
compositional models described earlier, in which
information about a given object is represented and
bound hierarchically. In principle and depending on
the task, feature enhancement could either be auto-
matic, or correspond to executive, top-down (“en-
dogenous”) attention. There is also evidence for
suppression of lower-level features which are con-
sistent with a high-level hypothesis. Such a mecha-
nism, sometimes referred to as “predictive coding”,
could support detecting and subsequently process-
ing image information that does not fit with the cur-
rent interpretation. Such a bottom-up signal would
provide the basis for exogenous attention, but in
contrast to a saliency computation (Li, 1997; Rao &
Ballard, 2013; Itti & Baldi, 2009; Chen et al., 2013;
L. Zhang et al., 2008; X. Zhang et al., 2012), which
could be accomplished laterally, the signal increase
is the result of a top-down prediction that fails.

Figure 6 shows behavioral evidence consistent
with a predictive coding interpretation of “explain-
ing away”, in which occlusion cues provide an ex-
planation for the missing vertices of the diamond
(see Kersten et al. 2004). When the diamond is seen
during an adaptation period (Figure 6C), there was
an increase in the strength of adaptation to shape
(e.g. adapting to a skinny diamond results in see-
ing a standard comparison diamond as fatter); at
the same time, there was a decrease in the strength
of adaptation to the local orientation of comparison
gratings. The converse was found when the occlu-
sion cues were inconsistent with a diamond (Fig-

ure 6D). The interpretation, consistent with other
research, rests on the assumption that the sites of
orientation and shape adaptation are in early and
higher-level cortical areas, respectively.

There is also evidence from human fMRI stud-
ies for context-dependent suppression of neural ac-
tivity in earlier areas in some cases (Murray et al.,
2002; Fang, Kersten, & Murray, 2008; Alink et al.,
2010; Rauss et al., 2011; Cardin et al., 2011), but
not all (Mannion et al., 2013). And suppression
measured using fMRI activity does not necessarily
show the spatial specificity suggested by the above
adaptation study or by theory (Wit et al., 2012).

In the language of signal detection theory, the
suppression of false and true positives through feed-
back could both be computationally useful. Sup-
pression of false positives and/or enhancement of
true positives in one population of neurons could
serve to bind object representations with parts and
features at lower levels, as in the above composi-
tional model. At the same time, increased activity
in another neural population could signal false pos-
itives, i.e. inconsistent features that need to be re-
solved with other hypotheses (Rao & Ballard, 1999;
Friston, 2005; Clark, 2012). Ultra-high field fMRI
with sub-millimeter resolution has found stronger
fMRI response in middle cortical layers of V1 dur-
ing the presentation of scrambled objects as com-
pared with intact objects (Olman et al., 2012), simi-
lar to what one might expect from prediction errors.

Hierarchically organized expertise. In the race
to make high priority decisions quickly, as in “core”
or basic-level recognition (DiCarlo et al., 2012), de-
tailed information about position, size, shape, ma-
terial and illumination direction is left behind, but
not necessarily discarded. We know that human
vision can discriminate subtle di↵erences in shape
and material, and even see gradients of illumination,
suggesting that it has the ability to access low-level
information, or recover transformations discounted
earlier (Grimes & Rao, 2005; Tenenbaum & Free-
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Figure 6. In studies with human subjects, He et al.
(2012) showed that perceptual grouping amplifies the ef-
fect of adaptation to a whole shape, while reducing the
strength of adaptation to local tilt. Thus perceptual group-
ing is consistent with enhancement of high-level shape
representation and attenuation of the low-level feature
representation, possibly the result of top-down predictive
coding. A The diamond corners undergo tight rotations
during adaptation. When covered by occluder, shown in
B, the diamond can still be perceived as shown in C. The
diamond percept can be disrupted by the occlusion rela-
tionships shown in D. E, F show test stimuli for measur-
ing the aftere↵ects of shape, and tilt, respectively. Figure
adapted from He et al. (2012).

man, 2000; Olshausen et al., 1993).

The ability of vision to extract information of dif-
ferent types and across multiple spatial scales raises
the possibility that feedback signals in visual hier-
archies have a richer computational function than
so far discussed. Neuronal activity and receptive
fields as early as primary visual cortex appear to
be modulated by task requirements (Gilbert & Sig-
man, 2007; McManus et al., 2011). The interesting
possibility is that the representation of information

across levels of the visual hierarchy is accessible for
a range of tasks. But for what functions, represen-
tations, and operations?

One possibility is that the optimal machinery,
representations, or coordinate frames for the task
exists at a lower level. T. Lee et al. (1998) sug-
gested that higher level computations that involve
fine-grain spatial and orientation information would
necessarily involve V1. There are a number of re-
sults consistent with this idea. For example, Harri-
son & Tong (2009) analyzed patterns of fMRI voxel
activity to show that visual areas from V4 down to
V1 can retain orientation information held in work-
ing memory over many seconds. Variations in per-
ceptual learning and its transfer may be understood
in terms of whether the learning task requires the
“expertise” of a lower- vs. higher-level of process-
ing (Hochstein & Ahissar, 2002). In another study,
Williams et al. (2008) found that the measured pat-
terns of fMRI activity near foveal retinotopic cor-
tex could discriminate which object category the
observers had been seeing with their peripheral vi-
sion. It has been known for some time that visual
imagery involving fine spatial discrimination, and
even orientation-specific tactile tasks may activate
representations in early visual areas (Kosslyn et al.,
1993; Kosslyn & Thompson, 2003; Zangaladze et
al., 1999; Lucan et al., 2010).

Consider the everyday task of inferring an ob-
ject’s physical size from its image. This is a non-
trivial computation with no current computer vision
solution. The visual system has to decide which fea-
tures form the boundary of the object’s image, i.e.
a challenging segmentation and grouping problem,
that could require feedback to retinotopic areas. The
locations of these features are needed to summa-
rize the average diameter, or angular size. Then
to estimate physical from angular size, the system
needs to process the larger context in order to take
the object’s depth into account. Further, size per-
ception often involves comparisons with other ob-
jects, raising the question of where to make those.
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The complexity of the analysis suggests an inter-
play between high-level representations, and early
retinotopic areas, particularly V1 for its high spa-
tial precision. Studies by Murray et al. (2006) and
Fang, Boyaci, et al. (2008) used a classic depth il-
lusion to show that the pattern of spatial activity in
V1 activity is indeed modulated by 3D depth con-
text (Figure 7). When an object (a ring) appeared
bigger, its “neural image” on V1 was bigger (i.e.
activation shifts to a more eccentric representation
of the visual field). This e↵ect was significantly
stronger when observers attended to the object, con-
sistent with feedback from higher-level areas that
process depth in the larger context of the scene. Psy-
chophysical data is also consistent with a top-down
influence of depth on orientation-selective, and pu-
tatively early cortical regions (Arnold et al., 2008).

Figure 7. This figure illustrates how global, contextual
information for 3D depth can shift the spatial extent of
activity in human V1.

The longer you look, the more you see.

Not many decades ago “perception” seemed to
be not much more than a screen, admittedly with
some puzzling distortions, viewed by a high-level

executive agent. Then retinal and cortical studies
showed that neurons were doing much more than
transmitting image information: they were empha-
sizing certain kinds of information, such as edges,
at the expense of others (smooth gradients). This
led to the idea of the retina and early visual cortical
areas as spatio-temporal filter banks. But still, the
emphasis was on early perceptual processing as a
set of filtering stages, e↵ectively passing decisions
forward from one stage to the next (Lennie, 1998).

Computer vision has provided the perspective
that in order to produce useful behavioral outcomes,
the human visual system is solving a decoding prob-
lem whose understanding requires concepts and
a level of analysis beyond traditional neural net-
work filtering. The past decade has seen substan-
tial progress in both the computational and neural
understanding of how vision could be solving the
problems of object perception. We have discussed
potential limitations on the robustness and versatil-
ity of vision with strictly feedforward processing
and have reviewed arguments and results suggest-
ing that both automatic and executive processes ac-
cess built-in image knowledge at several levels of
abstraction. We conjecture that the brain’s ability
to solve the problems of local uncertainty and task
versatility rests on deep generative knowledge of the
structure of images. A major challenge for the fu-
ture is to better understand the way the brain rep-
resents and controls the top-down utilization of this
knowledge (cf. Ullman, 1984; Blanchard & Geman,
2005), eventually explaining how the brain enables
us to see so much in just one picture of a fox.
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Hegdé, J. (2010, November). Fragment-Based
Learning of Visual Object Categories in Non-
Human Primates. PLoS ONE, 5(11), e15444.

Lamme, V. A., Sup, H., & Spekreijse, H. (1998).
Feedforward, horizontal, and feedback process-
ing cortex. Current Opinion in Neurobiology, 8,
529–535.

Lauritzen, S., & Spiegelhalter, D. (1988). Lo-
cal computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society. Series B
(Methodological), 157–224.

Lee, T., Mumford, D., Romero, R., & Lamme, V. A.
(1998, June). The role of the primary visual cor-
tex in higher level vision. Vision Research, 38(15-
16), 2429–2454.

Lee, T. S. (2003, March). Computations in the early
visual cortex. Journal of Physiology-Paris, 97(2-
3), 121–139.

Lee, T. S., & Mumford, D. (2003, July). Hierarchi-
cal Bayesian inference in the visual cortex. Jour-
nal of the Optical Society of America A, Optics,
Image Science, and Vision, 20(7), 1434–1448.

Lennie, P. (1998). Single units and visual cortical
organization. Perception, 27, 889–936.

Lerner, Y., Epshtein, B., Ullman, S., & Malach, R.
(2008, July). Class information predicts activa-
tion by object fragments in human object areas.
Journal of Cognitive Neuroscience, 20(7), 1189–
1206.

Li, Z. (1997). Primary cortical dynamics for visual
grouping.

Lochmann, T., & Deneve, S. (2011, October). Neu-
ral processing as causal inference. Current Opin-
ion in Neurobiology, 21(5), 774–781.

Lucan, J. N., Foxe, J. J., Gomez-Ramirez, M.,
Sathian, K., & Molholm, S. (2010). Tactile
shape discrimination recruits human lateral oc-
cipital complex during early perceptual process-
ing. Human Brain Mapping, NA–NA.

Lund, J., Angelucci, A., & Bresslo↵, P. C. (2003).
Anatomical substrates for functional columns in
macaque monkey primary visual cortex. Cerebral
Cortex, 13(1), 15–24.

Ma, W. J. (2010, October). Signal detection theory,
uncertainty, and Poisson-like population codes.
Vision Research, 50(22), 2308–2319.

Ma, W. J. (2012, October). Organizing probabilistic
models of perception. Trends in Cognitive Sci-
ences, 16(10), 511–518.

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget,
A. (2006, November). Bayesian inference with
probabilistic population codes. Nature Neuro-
science, 9(11), 1432–1438.

Ma, W. J., Beck, J. M., & Pouget, A. (2008,
April). Spiking networks for Bayesian inference
and choice. Current Opinion in Neurobiology,
18(2), 217–222.

Maloney, L. T., & Zhang, H. (2010, November).
Decision-theoretic models of visual perception
and action. Vision Research, 50(23), 2362–2374.

Mannion, D. J., Kersten, D. J., & Olman, C. A.
(2013, September). Consequences of polar form
coherence for fMRI responses in human visual
cortex. NeuroImage, 78(C), 152–158.

Markov, N. T., Vezoli, J., Chameau, P., Falchier, A.,
Quilodran, R., Huissoud, C., et al. (2013, Au-
gust). The anatomy of hierarchy: Feedforward
and feedback pathways in macaque visual cortex.
J Comp Neurol, n/a–n/a.



THE NEW COGNITIVE NEUROSCIENCES 19

Marr, D. (1982). Vision: A Computational Inves-
tigation into the Human Representation and Pro-
cessing of Visual Information. New York, NY,
USA: Henry Holt and Co., Inc.

Marr, D., & Nishihara, H. K. (1978, February).
Representation and Recognition of the Spatial
Organization of Three-Dimensional Shapes. Pro-
ceedings of the Royal Society B: Biological Sci-
ences, 200(1140), 269–294.

Marroquin, J., Mitter, S., & Poggio, T. (1987).
Probabilistic solution of ill-posed problems in
computational vision. Journal of the American
Statistical Association, 76–89.

McManus, J. N. J., Li, W., & Gilbert, C. D.
(2011, June). Adaptive shape processing in pri-
mary visual cortex. Proceedings of the National
Academy of Sciences, 108(24), 9739–9746.

Mountcastle, V. B. (1997, April). The columnar
organization of the neocortex. Brain, 120 ( Pt 4),
701–722.

Mumford, D. (1992). On the computational archi-
tecture of the neocortex. Biological Cybernetics,
66(3), 241–251.

Murray, S. O., Boyaci, H., & Kersten, D. (2006,
February). The representation of perceived angu-
lar size in human primary visual cortex. Nature
Neuroscience, 9(3), 429–434.

Murray, S. O., Kersten, D., Olshausen, B. A.,
Schrater, P., & Woods, D. L. (2002, Novem-
ber). Shape perception reduces activity in human
primary visual cortex. Proceedings of the Na-
tional Academy of Sciences of the United States
of America, 99(23), 15164–15169.

Nassi, J. J., & Callaway, E. M. (2009, April). Paral-
lel processing strategies of the primate visual sys-
tem. Nature Reviews Neuroscience, 10(5), 360–
372.

Noudoost, B., Chang, M. H., Steinmetz, N. A., &
Moore, T. (2010, April). Top-down control of vi-
sual attention. Current Opinion in Neurobiology,
20(2), 183–190.

Olman, C. A., Harel, N., Feinberg, D. A., He, S.,
Zhang, P., Ugurbil, K., et al. (2012, March).
Layer-Specific fMRI Reflects Di↵erent Neuronal
Computations at Di↵erent Depths in Human V1.
PLoS ONE, 7(3), e32536.

Olshausen, B. A. (1996). Emergence of simple-
cell receptive field properties by learning a sparse
code for natural images. Nature, 381(6583), 607–
609.

Olshausen, B. A., Anderson, C. H., & Van Essen, D.
(1993, November). A neurobiological model of
visual attention and invariant pattern recognition
based on dynamic routing of information. The
Journal of Neuroscience, 13(11), 4700–4719.

Olshausen, B. A., & Field, D. J. (2005, August).
How close are we to understanding v1? Neural
Computation, 17(8), 1665–1699.

Orbán, G., Fiser, J., Aslin, R. N., & Lengyel,
M. (2008). Bayesian learning of visual chunks
by human observers. Proceedings of the Na-
tional Academy of Sciences of the United States
of America, 105(7), 2745.

Orban, G., & Wolpert, D. M. (2011, August). Rep-
resentations of uncertainty in sensorimotor con-
trol. Current Opinion in Neurobiology, 21(4),
629–635.

Orban, G. A. (2008, January). Higher order visual
processing in macaque extrastriate cortex. Physi-
ological reviews, 88(1), 59–89.

Pearl, J. (1988). Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference
(1st ed.). Morgan Kaufmann.



20 D. KERSTEN

Petersen, S. E., & Posner, M. I. (2011, July). The
Attention System of the Human Brain: 20 Years
After. Annual Review of Neuroscience, 35(1),
120518152625006.

Poggio, T. (2011, September). The Computational
Magic of the Ventral Stream: Towards a Theory.
Nature Precedings.

Purves, D., & Lotto, R. (2003). Why we see what we
do: An empirical theory of vision. Sunderland,
Mass., U.S.A. : Sinauer Associates.

Rao, R. P., & Ballard, D. (1999). Predictive coding
in the visual cortex: a functional interpretation of
some extra-classical receptive-field e↵ects. Na-
ture Neuroscience, 2, 79–87.

Rao, R. P., & Ballard, D. H. (2013, April). Proba-
bilistic Models of Attention based on Iconic Rep-
resentations and Predictive Coding. In L. Itti,
G. Rees, & J. Tsotsos (Eds.), Neurobiology of at-
tention (pp. 1–16). Academic Press.

Rauss, K., Schwartz, S., & Pourtois, G. (2011,
April). Top-down e↵ects on early visual process-
ing in humans: A predictive coding framework.
Neuroscience and Biobehavioral Reviews, 35(5),
1237–1253.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical
models of object recognition in cortex. Nature
Neuroscience, 2, 1019–1025.

Roe, A. W., Chelazzi, L., Connor, C. E., Conway,
B. R., Fujita, I., Gallant, J. L., et al. (2012,
April). Toward a Unified Theory of Visual Area
V4. Neuron, 74(1), 12–29.

Roe, A. W., Chen, G., & Lu, H. (2009, May). Visual
System: Functional Architecture of Area V2. In
L. R. Squire (Ed.), Encyclopedia of neuroscience
(pp. 331–349). Elsevier.

Roelfsema, P. (2006). Cortical algorithms for
perceptual grouping. Annual Review of Neuro-
science, 29, 203–227.

Rolls, E., & Foldiak, P. (1993). Learning invariant
responses to the natural transformations of ob-
jects. Neural Networks.

Schölkopf, B., & Smola, A. J. (2002). Learning
with kernels : support vector machines, regular-
ization, optimization, and beyond. Cambridge,
Mass. : MIT Press.

Schwartz, O., & Simoncelli, E. P. (2001, August).
Natural signal statistics and sensory gain control.
Nature Neuroscience, 4(8), 819–825.

Shi, J., & Malik, J. (2000). Normalized cuts and
image segmentation. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 22(8),
888–905.

Spratling, M. W. (2012, December). Distinguishing
Theory from Implementation in Predictive Cod-
ing Accounts of Brain Function. , 1–3.

Stocker, A. A., & Simoncelli, E. (2008). A
Bayesian model of conditioned perception. Ad-
vances in neural information processing systems,
20, 1409–1416.

Tappen, M., Freeman, W., & Adelson, E. (2005).
Recovering intrinsic images from a single image.
Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 27(9), 1459–1472.

Tenenbaum, J. B., & Freeman, W. (2000). Separat-
ing style and content with bilinear models. Neu-
ral Computation, 12(6), 1247–1283.

Trenti, E. J., Barraza, J. F., & Eckstein, M. P. (2010,
February). Learning motion: Human vs. optimal
Bayesian learner. Vision Research, 50(4), 460–
472.

Tsotsos, J. K., Culhane, S. M., Kei Wai, W. Y., Lai,
Y., Davis, N., & Nuflo, F. (1995). Modeling vi-
sual attention via selective tuning. Artificial in-
telligence, 78(1), 507–545.



THE NEW COGNITIVE NEUROSCIENCES 21

Tu, Z., Chen, X., Yuille, A., & Zhu, S. (2005). Im-
age parsing: Unifying segmentation, detection,
and recognition. In International journal of com-
puter vision (pp. 113–140).

Ullman, S. (1984). Visual routines. COGNITION,
18(1-3), 97–159.

Ullman, S., Vidal-Naquet, M., & Sali, E. (2002,
June). Visual features of intermediate complex-
ity and their use in classification. Nature Neuro-
science.

Vilares, I., & Körding, K. P. (2011, April). Bayesian
models: the structure of the world, uncertainty,
behavior, and the brain. Annals of the New York
Academy of Sciences, 1224(1), 22–39.

Wallisch, P., & Movshon, J. A. (2008, October).
Structure and Function Come Unglued in the Vi-
sual Cortex. Neuron, 60(2), 194–197.

Waltz, D. L. (1972). Generating semantic de-
scriptions from drawings of scenes with shadows
(Tech. Rep.).

Weiss, Y., Simoncelli, E. P., & Adelson, E. H.
(2002, May). Motion illusions as optimal per-
cepts. Nature Neuroscience, 5(6), 598–604.

Williams, M. A., Baker, C. I., Beeck, H. P. Op de,
Shim, W. M., Dang, S., Triantafyllou, C., et al.
(2008). Feedback of visual object information to
foveal retinotopic cortex. Nature Neuroscience,
11(12), 1439–1445.

Wit, L. H. de, Kubilius, J., Wagemans, J., & Beeck,
H. P. Op de. (2012, October). Bistable Gestalts
reduce activity in the whole of V1, not just the
retinotopically predicted parts. Journal of Vision,
12(11), 12–12.

Wolpert, D. M., & Landy, M. S. (2012, December).
Motor control is decision-making. Current Opin-
ion in Neurobiology, 22(6), 996–1003.

Wozny, D. R., Beierholm, U. R., & Shams, L.
(2010). Probability matching as a computational
strategy used in perception. PLoS Computational
Biology, 6(8), e1000871.

Wu, S., Lu, H., & Yuille, A. (2008). Model selec-
tion and velocity estimation using novel priors for
motion patterns. In D. Koller, D. Schuurmans, &
Y. B. L. Bottou (Eds.), Advances in neural in-
formation processing systems (pp. 1793–1800).
Cambridge, MA: MIT Press.

Yuille, A. (2010, August). An information theory
perspective on computational vision. Frontiers of
Electrical and Electronic Engineering in China,
5(3), 329–346.

Yuille, A., & Kersten, D. (2006, July). Vision
as Bayesian inference: analysis by synthesis?
Trends in Cognitive Sciences, 10(7), 301–308.

Yuille, A. L., & Mottaghi, R. (2013). Complex-
ity of Representation and Inference in Composi-
tional Models with Part Sharing. arXiv preprint
arXiv:1301.3560.

Zangaladze, A., Epstein, C. M., Grafton, S. T., &
Sathian, K. (1999, October). Involvement of
visual cortex in tactile discrimination of orienta-
tion. Nature, 401(6753), 587–590.

Zeiler, M., Taylor, G., & Fergus, R. (2011). Adap-
tive deconvolutional networks for mid and high
level feature learning. Computer Vision (ICCV),
2011 IEEE International Conference on, 2018–
2025.

Zemel, R. S., & Pouget, A. (1998, February). Prob-
abilistic interpretation of population codes. Neu-
ral Computation, 10(2), 403–430.

Zhang, L., Tong, M. H., Marks, T. K., Shan, H., &
Cottrell, G. W. (2008, May). SUN: A Bayesian
framework for saliency using natural statistics.
Journal of Vision, 8(7), 32–32.



22 D. KERSTEN

Zhang, X., Zhaoping, L., Zhou, T., & Fang, F.
(2012, January). Neural Activities in V1 Create
a Bottom-Up Saliency Map. Neuron, 73(1), 183–
192.

Zhu, L., Chen, Y., Lin, C., & Yuille, A. (2010, Au-
gust). Max Margin Learning of Hierarchical Con-
figural Deformable Templates (HCDTs) for E�-
cient Object Parsing and Pose Estimation. Inter-
national Journal of Computer Vision, 93(1), 1–
21.

Zhu, L., Chen, Y., Torralba, A., Freeman, W.,
& Yuille, A. (2011, January). Part and ap-
pearance sharing: Recursive compositional mod-
els for multi-view multi-object detection. IEEE

Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 1919–1926.

Zhu, L., Chen, Y., & Yuille, A. (2011, April). Re-
cursive Compositional Models for Vision: De-
scription and Review of Recent Work. Journal of
Mathematical Imaging and Vision, 41(1-2), 122–
146.

Ziemba, C. M., Heeger, D. J., Simoncelli, E. P.,
Movshon, J. A., & Freeman, J. (2013, May).
A functional and perceptual signature of the sec-
ond visual area in primates. Nature Publishing
Group, 1–12.


