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Introduction

Although research has provided an enormous
amount of knowledge about visual brain anatomy,
physiology and neural mechanisms, this knowledge
is insufficient to quantitatively describe neural dy-
namics of large systems of neurons (except in cer-
tain restricted regimes). Moreover, even precise
knowledge of neural dynamics would only yield
partial understanding of brain function (knowing
the electronic dynamics of a computer does not give
much insight into the algorithm that the computer
is running). This suggests that direct approaches
based on studying the neurobiology of visual cir-
cuitry must be augmented by understanding visual
processing at a more abstract level (Figure 1). Such
understanding should take into account behavioral
functions or tasks, and the computational problems
the organism must solve. We get insight into tasks
through the study of how animals, such as our-
selves, use vision (Milner & Goodale, 2006) as well
as their relationships to the development of com-
puter vision systems that are required to achieve
specific goals (Ullman, 2000).

Published in: The New Visual Neurosciences (2013).
MIT Press, Cambridge MA. John S. Werner and Leo M.
Chalupa (Editors). Comments may be sent to the author at
kersten@umn.edu. D.K. and A.Y. were supported by the
WCU (World Class University) program funded by the
Ministry of Education, Science and Technology through
the National Research Foundation of Korea (R31-10008).

Functional
Theories

Bayesian
Theories Algorithms Neural

Circuits

Figure 1. Probabilistic/Bayesian theories fall between
the functional (“computational”) and algorithmic levels of
analysis in Marr’s categorization of three levels of analy-
sis for the study a complex information processing system
such as vision (Marr, 1982).

This chapter describes how visual processing can
be modeled and understood in terms of probabilis-
tic inference, or equivalently, as a decoding problem
where the goal is to determine information about the
world from image patterns reaching the eyes. Infor-
mation gathering, however, is not a passive process
and depends on the goals and abilities of the organ-
ism performing the decoding. From this perspec-
tive, three important questions are: 1) what types
of image patterns occur? 2) what information can
be extracted from these patterns for a given task?
and 3) how does the organism’s inferences compare
with optimal inference given answers to 1) and 2)?
(See Fig. 2.)

At this abstract level, the primary concern is with
how the required computations and algorithms for
inference and learning constrain neural processing.
This priority is arguably a consequence of the in-
herent complexity of natural image patterns. Marr
wrote in 1982: “...the nature of the computations
that underlie perception depends more upon the
computational problems that have to be solved than
upon the particular hardware in which their solu-
tions are implemented” (Marr, 1982). Theories of
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Figure 2. Three levels of study in perceptual inference.

human perceptual inference require an understand-
ing of the limits of perceptual inference through op-
timal decoding theories. These theories, in turn, re-
quire an understanding of the transformations and
variations introduced in pattern formation.

Advances in applied mathematics, probability
theory, information theory, artificial neural net-
works, and artificial intelligence have helped to de-
velop a Bayesian framework for approaching vi-
sion as well as other problems, including sensori-
motor control (Körding & Wolpert, 2006; Schlicht
& Schrater, 2007; Battaglia & Schrater, 2007;
Franklin & Wolpert, 2011) and cognition (Griffiths
et al., 2010). This framework includes a common
language for describing vision problems, mathe-
matical techniques for modeling them, and algo-
rithms that can be applied to solve them. These
advances have been facilitated by the enormous in-
crease in computer power which has made it possi-
ble to explore increasingly complicated probability
models.

The Bayesian framework reduces to standard sig-
nal detection theory as a special case (Green &
Swets, 1966), but goes beyond it in its range of
applicability, the power of its techniques, and the
kinds of questions asked (Kersten & Schrater, 2002;
Chater et al., 2006). The development of signal de-
tection theory in the 1950s was strongly motivated
by the idea that errors in psychophysical decisions

varied because of noise and bias inside the observer.
However, not long after computer vision began at-
tempts to mimic human perception in the late 1960s,
it became apparent that the fundamental limit to
accurate and reliable perceptual decisions (by ma-
chine or organism) was not noise in the internal pro-
cessing or sensory measurements, but rather the am-
biguity in what local image measurements implied
about the external world. This problem was exac-
erbated with the realization that useful information,
i.e. signals like “curved line”, “round shape”, or
“baseball player”, require substantial computation
to be decrypted from input image patterns. While
understanding how the brain deals with noisy input
and neurons is important, this chapter focuses on
elements of the Bayesian program that are impor-
tant for studying vision when internal noise can be
neglected, and where the challenge is to discover
and extract important information given the inher-
ent ambiguities and complexities of images.

The past decade has produced a substantial body
of research interpreting human behavior and neu-
ral coding from a Bayesian framework1. For practi-

1 For a general introduction to Bayesian inference
in cognitive science see Griffiths & Yuille (2008), for
Bayesian models applied to ideal observer psychophysics
and natural systems analysis, Geisler (2008, 2011), for
an overview and critique applied to cognitive neuro-
science, Colombo & Seriès (2012), for Bayesian decision
theory, Körding (2007); Maloney & Mamassian (2009),
to optimal learning Fiser et al. (2010), and for an earlier
review of object perception, see Kersten et al. (2004). For
examples of applications of ideal observers to learning,
attention, and letter detection, see Trenti et al. (2010);
Eckstein et al. (2006); Pelli et al. (2006), to saliency and
eye movements (Torralba et al., 2006; Itti & Baldi, 2009;
Zhang et al., 2008; Chikkerur et al., 2010), to contour and
shape (Feldman, 2001; Feldman & Singh, 2005; Wilder
et al., 2011), filling-in (Zhaoping & Jingling, 2008), and
to cross-modal interactions see Battaglia et al. (2011);
Körding et al. (2007); Shams (2010). For neural coding,
see Pouget et al. (2000); Knill & Pouget (2004); Fiser et
al. (2010); Ma (2010); Berkes et al. (2011).
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cal experimental reasons, this work has focused on
modular problems, where the tasks are limited and
the stimulus descriptions simple. Yet, human vision
deals with images that are enormously complex and
for a wide range of tasks. Our aim in this chap-
ter is to show how recent developments in Bayesian
models can provide insight into how the visual sys-
tem deals with the complexities of natural images,
and its relation to the hierarchical organization of
the visual cortex.

The rest of this chapter is divided into three main
sections: 1) Bayesian Modeling describes basic
probabilistic concepts and operations; 2) Dealing
with image complexity and task flexibility develops
ideas from computer vision to questions of ventral
stream feature hierarchy; 3) Behavioral and neural
evidence for Bayesian computations describes re-
sults of several experiments consistent with hierar-
chical, probabilistic computations in the visual sys-
tem.

Bayesian Modeling

Basic ingredients. We assume that the knowl-
edge required for perception is represented in terms
of a probability distribution, p(I, s), over random
variables that are measurable, I, and hidden vari-
ables, s, some or all of which need to be estimated.
2 At the most basic level, we think of measurable
variables as the intensity pattern at the eye, I. But
measurables are often assumed to be features that
are “easily” computed from the image early in pro-
cessing. Deciding what is a measurable feature and
what is a state to be inferred is a modeling assump-
tion. For example, estimating the distance of an ob-
ject from an image requires a “measurement” of an-
gular size; however, determining the angular size of
an object is itself a non-trivial inference in a natural
image with background clutter.

Hidden variables can represent interpretable, ex-
ternal states of the world such as objects and events,
or more abstract causes or “latent variables” that
capture regularities in the image.

Using the product rule to condition the joint dis-
tribution on a measurement I, reduces the uncer-
tainty about s:

p(s|I) = p(s, I)/p(I)

This distribution is called the posterior distribution
of s on I, and is the basis for optimal inference.

Typically more than one cause influences a mea-
surable image variable (Figure 3B). One component
of cause s in s = (s1, s2) may be important to es-
timate, whereas another is a confounding or “nui-
sance” variable to be discounted (Figure 3C). For
example, suppose the image intensity is I = s1 � s2,
with s1 and s2 representing reflectance (“grayness”
of surface) and illumination (level of light falling
on a surface), respectively. The pattern of light, s2,
falling on an object is usually considered a nuisance
variable, whereas s1 is important because it is an
invariant surface property useful for object recogni-
tion (e.g. “is it a white or black piece of paper?”).
Like conditioning, discounting can reduce uncer-
tainty about the remaining variables, through appli-
cation of the “sum rule”, called marginalization:

p(s1|I) =
∑

s2

p(s1, s2|I).

Because the problem of confounding variables is the
rule rather than the exception, marginalization can
be viewed as a basic operation for inference that un-
derlies useful decisions. Its effects could be built
in, as in distinct visual pathways specialized for
different functions (Milner & Goodale, 2006; Fang
& He, 2005). Or it could involve dynamic neural
processes that adapt to the task at hand. Freeman

2 The term “hidden” emphasizes the fact that the val-
ues of states of the world are effectively encrypted and
need to be decoded. This is the central mystery of per-
ception. The shape of an object may appear to be a direct
measurement (and at some higher level could be treated
as such), but computational theory and experiments have
shown that inferring shape from image patterns requires
inferential processes.
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(1994) showed how marginalizing with respect to
viewpoint and illumination could substantially re-
duce uncertainty about shape and material. Integrat-
ing out illumination direction can also disambiguate
depth from cast shadows (Kersten, 1999). Freeman
(1994) further showed that marginalization could
be viewed as choosing the estimate least sensitive
to variations in the confounding variable, providing
a Bayesian interpretation of the generic viewpoint
principle (see Lowe (1987); Nakayama & Shimojo
(1992)). Beck et al. (2011) show that given cer-
tain assumptions about spike train statistics, some
kinds of marginalization can be achieved through
divisive normalization (usually thought of in terms
of gain control and attentional processes, Reynolds
& Heeger (2009); Carandini & Heeger (2011)).
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Figure 3. Simple directed graphs. The solid arrows rep-
resent conditional probability relationships between par-
ents and descendants. A. “Basic Bayes”, where the joint
is factorized as p(s, I) = p(I|s)p(s). The dashed arrow
indicates the bottom-up direction of inference. B. More
than one cause contributes to measurements, p(I, s1, s2) =

p(I|s1, s2)p(s1)p(s2). This kind of graph implies condi-
tional dependence of the causes given a measurement, and
marginal independence over measurements. Causes can
effectively compete to explain a measurement, a Bayesian
phenomenon called “explaining away” (Pearl, 1988). C.
If only one parent variable is important to estimate, the
other one needs to be integrated out, i.e. discounted. D.
One cause leads to two effects, i.e. image measurements.
The graph implies that the two measurements are condi-
tionally independent given s. This generative model is the
basis for tests of optimal cue integration.

Generative models. The posterior probability,
p(s|I), represents the information required for re-
liable estimates of states of the world from im-

age input. The posterior could be as simple as a
look-up table assigning probabilities to scenes for a
given input, without an explicit model of input vari-
ation3. But visual images are complex, inferences
are computationally hard, and there are big advan-
tages to expressing the posterior in terms of gen-
erative components, i.e. a description of the regu-
larities in the causes (state variables describing ob-
jects, scenes, events, independent of the resulting
images) and how those causes create images4. To
provide some intuition as to why generative knowl-
edge is useful, consider the many images that could
result from a pair of gardening shears. Its appear-
ance will vary with lighting, position, 3D orienta-
tion and the opening angle. In practice, it is im-
possible to have lookup table that can anticipate all
possible appearances. While some variations may
be efficiently handled bottom-up, others such as dis-
counting 3D orientation or opening angle can be
much more efficiently handled with object-specific
knowledge–i.e. that a shears can rotate in depth, and
open and close Ullman (2000). Bayes rule describes
the relationship between the posterior and informa-
tion about how images could be formed. It says:

p(s | I) =
p(I | s)p(s)

p(I)
=

p(I | s)p(s)∑
s′ p(I | s′)p(s′)

.

This theorem re-expresses p(s | I), the probabil-
ity of the state given the measurement, in terms of
p(I | s), the probability of the measurement given
the state (called the likelihood of s), and p(s), the
probability of the state variables (called the prior).

3 Decisions based on p(s|I) in the absence of a gen-
erative model are called discriminative. The distinc-
tion between discriminative and generative models is re-
lated to the distinction made between policy and model-
based learning in Bayesian reinforcement learning the-
ory (Strens, 2000).

4 Generative means that, in principle, one can generate
observables I by first drawing a sample from p(s), call it
s′, and then a sample of I from p(I|s′).
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It tells us that we can look to models of how im-
age patterns are formed by states of the world (e.g.
shape, material, lighting and viewpoint) as well as
models of regularities of those states (e.g. surface
smoothness, pigmentation, ...).

Elaborating graphical structure. Bayes’ formula
makes generative knowledge explicit in terms of
two basic factors represented as “Basic Bayes” in
the graph of Figure 3A; however, more structure
is needed to cope with the range of tasks and the
complex interdependency of image intensities. It
is impossible to do Bayesian inference on high di-
mensional joint distributions, p(I1, I2, ...., s1, s2, ....),
without appropriate knowledge structuring. A
straightforward next step is to consider slightly
more complex graphs, for example involving more
than one cause (Figure 3B & C), one cause lead-
ing to more than one measurement (Figure 3D), and
simple 3-level hierarchies (Figure 7).

Consider the case where one cause produces
more than one measurement, providing the basis for
cue integration (Figure 3D). A distinctive predic-
tion of Bayesian observers is that decisions should
be based on full knowledge of the posterior distri-
bution, i.e. including higher-order moments. Fol-
lowing the work of Clark & Yuille (1990), Jacobs
(1999), and Ernst & Banks (2002); Ernst & Bülthoff

(2004), numerous studies have tested whether hu-
mans combine sensory information weighted by re-
liability (the reciprocal of the second moment, vari-
ance). The majority of these studies confirm opti-
mality, with possible exceptions (cf. Cheng et al.,
2007; Gori et al., 2008). Most studies of cue in-
tegration have been restricted to continuous-valued
measurements whose precision is modeled using
standard gaussian and independence assumptions,
and thus a linear weighting function. Stevenson &
Körding (2009) devised a Bayesian ideal observer
that uses occlusion, a non-metric cue, and showed
that their model accurately predicts human depth
judgments.

While small graphs are useful for low-
dimensional, modular analyses of visual behavior,
substantially more structure is needed to understand
recognition with natural images, and we return
to this later when we discuss a possible relation-
ship of cortical visual architecture to graphical
representations.

Making decisions & estimates. To make a de-
cision, one can choose values of the state vari-
ables that maximize the appropriately conditioned
and marginalized distribution–this is the maximum
a posterior (MAP) estimate, which is optimal in the
sense of minimizing the average error rate. But hu-
man perception is flexible and some tasks may need
several estimates, each requiring different levels of
precision, and perhaps at different times. To pick up
a ball, you need to know how far away and how big
it is. Given a measurement of angular size, I, and
a constraint I ≈ s2/s1, planning the reach requires
a good estimate of distance (s1), while the actual
grasping requires a good estimate of physical size
(s2). Bayesian decision theory generalizes the oper-
ation of marginalization and defines optimality for
an action as minimizing the risk:

R(α; I) =
∑

s

L(α, s)p(s | I),

where the loss function L(α, s) is the cost of decid-
ing to take action α when the true world state is s
(see Geisler & Kersten, 2002; Maloney & Mamas-
sian, 2009). To keep things simple, the rest of this
chapter assumes that conditioning and marginaliza-
tion choices are sufficient to characterize different
task requirements.

As discussed below, Bayesian models for ob-
ject recognition represent knowledge as probabili-
ties over complex, but structured graphs. Inference
on complex graphs requires message passing algo-
rithms that update local conditional distributions at
all nodes by passing information between neigh-
bors, given that the values of some nodes are fixed
and others integrated out. Belief propagation is one
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such method (Pearl, 1988; MacKay, 2003). Mes-
sages that update probabilities rather than passing
on decisions respect the Bayesian version of Marr’s
principle of least commitment (Marr, 1982). The
question of whether communication between neural
populations observes this principle, (cf. Ma et al.,
2006), or instead involves decisions that get passed
from one population to the next (cf. Lennie, 1998),
is a fundamental unanswered question in brain sci-
ence.

So far we have treated decisions at an abstract
level without distinguishing deliberate from au-
tomatic decisions, or those at the level of sub-
processes. An intriguing proposal is that percep-
tion doesn’t actually commit to a decision in the
usual sense. Instead a conscious percept reflects
a stochastic sample drawn from a posterior dis-
tribution. The posterior is represented by a col-
lection of exemplars that approximate the frequen-
cies of occurrence of the perceptual hypothesis con-
ditioned on the measurements (Lee & Mumford,
2003; Fiser et al., 2010). There are a number of
behavioral results, including perceptual bistability,
consistent with this idea (Sundareswara & Schrater,
2008; Gershman et al., 2012; Moreno-Bote et al.,
2011; Battaglia et al., 2011).

In summary, visual knowledge can be conceptu-
alized as a joint distribution over possible images
and interpretations. The operations of conditioning
and marginalizing narrow the space of possibilities
through image measurements and task assumptions,
respectively. Optimal decisions require computa-
tions that take full account of the knowledge avail-
able, including knowledge of uncertainty.

Dealing with image
complexity and task

flexibility

While Bayesian models have provided com-
pelling accounts of how human visual behavior
manages uncertainty for low-dimensional problems,
a central problem is to understand how the vi-

sual system is organized to deal with the high-
dimensionality of raw image data. In the next sec-
tions, we compare what is known about the neu-
ral basis of object processing and recognition in the
ventral stream with Bayesian computer vision sys-
tems for recognizing objects in natural images.

The basic assumption is that the organization of
cortical areas reflects the structure of natural images
for efficient representation, learning, and inference.

Object recognition and ventral stream pro-
cessing

A large body of results from primate neurophys-
iology and human neuroimaging is consistent with
the idea that visual object processing is based on
a hierarchical organization of stages through which
image information is successively transformed from
a high-dimensional set of local feature measure-
ments with a small number of types (e.g. edges at
many locations) to increasingly lower-dimensional
representations of many types (e.g. dog, baseball
player, ...), and that this increase in selectivity is ac-
companied by increased invariance to illumination,
translation and scale (cf. Grill-Spector & Malach,
2004; Kourtzi & Connor, 2011; Roe et al., 2012;
DiCarlo et al., 2012).

Further, activity in these cortical stages is mod-
ulated by context and task suggesting computations
that operate within and between these areas. How-
ever, from a computational perspective, there is no
clear consensus as to exactly what information vi-
sual cortical areas represent, why they have the
form they do, or what operations act on these rep-
resentations. (For various theories and analyses,
see Marr (1982); Ullman (1995, 2007); Epshtein et
al. (2008); Poggio (2011); Friston (2005); DiCarlo
et al. (2012)).

Bayesian systems for object recognition

From a Bayesian perspective, the structure of im-
ages can be formulated in terms of probability dis-



THE NEW VISUAL NEUROSCIENCES 7

tributions over graphs. To do this, we assume the
following.

1) The visual system’s structure should rely on
the compositional structure of natural images (Ge-
man et al., 2002; Jin & Geman, 2006; Yuille, 2011).
Compositionality refers to the ability to construct
hierarchical representations, whereby features/parts
are used and shared to describe a virtually unlimited
number of relational compositions. One argument is
that without such a structure, we could not account
for the speed with which humans can acquire and
generalize visual knowledge.

2) Visual knowledge can be represented as a
graphical structure in which nodes are random
variables that represent hypotheses about features,
parts, objects and their relations, and the links cap-
ture the statistical dependencies between nodes. It is
important to note that this assumption involves ex-
plicit representations with accessible semantic inter-
pretations, not just sequential banks of spatial filters
(see below). This seems to be necessary to perform
a range of visual tasks at different levels of analysis,
and for the ability to transfer learning (e.g., not just
detect objects like cats, but also locate their parts
and spatial relations, and even learn to recognize
hybrid objects, e.g. which have cat torsos and dog
legs).

3) The system should be organized to be able to
detect conjunctions of features that belong together
as part of an object, while at the same time dis-
counting, through disjunction, sources of variation,
such as scale, illumination, position, and articula-
tion. An illustration of this principle are AND/OR
graphs (see below).

4) Inference and task flexibility is achieved by
fixing values of nodes based on image measure-
ments, priming, or attention, together with integrat-
ing out variables that are unimportant for a given
task.

Motivated by stiff competitions within the com-
puter vision community to build recognition sys-
tems that can handle the enormous variation of nat-

ural images (e.g. (Everingham et al., 2006)), algo-
rithms have been developed that can do flexible in-
ference as well as learn a generative structure. For a
review of several Bayesian hierarchical composition
models for recognition see Zhu et al. (2011). Next
we describe an example to illustrate how knowledge
is represented at different levels, how it performs
different tasks, and how it can perform bottom-up
and top-down inference. As with the primate ven-
tral stream, higher level nodes represent hypotheses
more coarsely, with increased specificity and invari-
ance from bottom to top.

An example of a computer model for recognition.
The task is to detect and parse a baseball player,
given the naturally occurring wide range of varia-
tion in lighting, poses, and background clutter (Zhu,
Chen, Lin, & Yuille, 2010). Figure 4 illustrates a
model of a baseball player formulated as a proba-
bilistic model defined over an AND/OR graph (Zhu,
Chen, Lin, & Yuille, 2010). Selectivity and invari-
ance are achieved through AND and OR operations.
Although the logical operations are reminiscent of
the “simple” and “complex” cell units in Riesen-
huber & Poggio (1999), here the nodes represent
random variables with semantic content and with
associated distributions, and the links involve two-
way interactions. The high level nodes represent
body parts such as head, torso, and feet–while the
lower level nodes represent the subparts. The high
level nodes/parts are either compositions of lower
nodes/subparts or are choices between different al-
ternative subparts. The compositions and choices
correspond to logical AND and OR operations, re-
spectively.

The representation of a baseball player requires
specifying the state variables of all the nodes in the
hierarchy. The high level nodes only contain exec-
utive level descriptions – e.g., the center position,
size, and orientation of the head – leaving more
precise information – e.g., the precise position of
the boundary of the head – to be represented by the
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states of the lower-level nodes. This is similar to the
gradual loss of positional specificity as one moves
up the ventral stream. The existence of some repre-
sentation of spatial relations even at higher levels is
consistent with behavioral and with functional mag-
netic resonance imaging (fMRI) studies (Kravitz et
al., 2010).

The edges between the different graph nodes, and
the local conditional probabilities defined over them
(see description of Markov Random Fields, Fig-
ure 6), capture the statistical relations about the
spatial configurations of the baseball player (i.e. the
likely relative positions of the body parts, and which
body parts are likely to occur taking into account
viewpoint and pose changes).



















  

          

 


Figure 4. The AND/OR Graph Model (Zhu, Chen, Lin,
& Yuille, 2010). The Baseball player is an AND of the
head and torso, and left and right legs, but the head is
an OR of straight head and torso or an inclined head and
torso (top left).

Because the AND/OR graph is a probability
model defined over a graph, one can perform infer-
ence to estimate the states of the unknown graph
nodes, conditioned on the values of a subset of the
nodes by message passing algorithms. This leads to
a bottom-up and top-down strategy which is driven
by input from the images (i.e. the model is condi-
tioned on the states of the bottom-levels). Hypothe-
ses are computed at the lower-levels and propagated
up the hierarchy to form hypotheses for larger parts
of the object and top-down processing is used to re-

move the “false” hypotheses at lower levels. Intu-
itively there will be many possible hypotheses for
the small sub-parts of the object, since small fea-
tures and parts of the object are easy to confuse with
the background clutter. Compositions of sub-parts,
however, are less likely to occur by chance in the
background. So as the algorithm passes messages
up the hierarchy it will tend to converge to the cor-
rect solution. Convergence speed depends on the
reliability of the initial measurements.

One can also run the model in an atten-
tional/priming mode where some of the top-level
nodes are fixed (or conditioned on) – i.e. the sys-
tem is primed to see a baseball player but does not
know exactly where it is – while the bottom level
nodes are also specified by the data (if we condition
only on the top-level nodes, allowing no input from
the image, then this is like imagining, or dreaming,
a baseball player). This requires passing messages
both top-down (from the primed nodes) and bottom-
up (from the input nodes).

Learning hierarchical structure in natural
images

While the brain clearly needs to be adaptive to
image structures relevant for successful behaviors,
the complexity of natural images suggests that part
of the brain’s solution involves the discovery of hi-
erarchical structure in images themselves. A prop-
erty of natural images is that intensities are to a first
approximation, piece-wise smooth, so that one can
predict pixel intensities from nearby pixels. Barlow
argued that if image content is recoded to remove
these and other higher-order statistical dependen-
cies (through sparse coding), it becomes easier to
compute useful information with probabilities (Bar-
low, 2001). Then one can detect “suspicious coinci-
dences” (is p(s1, s2) >> p(s1)p(s2) ?), and learn to
predict them so they become unsuspicious.

The principle of detecting suspicious coinci-
dences provides the means to build up a hierarchical
model of features, parts, objects and scenes (Zhu et
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al., 2008). Learning relies on a compositional prior
for hierarchical world structure in which an image
can be composed from meaningful, “reusable” parts
as in language (Geman et al., 2002). A number of
learning algorithms have been developed to learn hi-
erarchical models from data (cf. Hinton, 2007; Zhu,
Chen, Torralba, et al., 2010; Zeiler et al., 2011). We
describe the results of one by Zhu, Chen, Torralba,
et al. (2010) that explicitly relies on the composi-
tional nature of collections of natural objects.

Figure 5 shows the hierarchy of features, parts,
and shapes that result from learning models for the
small parts first and then combining them to learn
models for the larger parts. Unlike other hierarchi-
cal models (e.g., deep-belief networks), the graph
structure of the probability model is learned, not
just the weights. This allows the model to adapt and
transfer to novel stimuli. The algorithm can rapidly
learn to recognize a new object if it can be con-
structed by combining parts that have already been
learned for other objects.

What aspects of the above Bayesian models
might be shared by the primate visual system? The
large proportion of our knowledge of primate vision
is early-level, and the next section focuses on evi-
dence that the visual system is well-adapted to the
generative structure of images, and that these early
representations provide the basis for lateral and hi-
erarchical probabilistic computations that begin at
the bottom level of the visual hierarchy. This section
is followed by a description of several behavioral
and neuroimaging studies that support interactions
between lower- and higher-level processing stages.

Behavioral and neural
evidence for Bayesian

computations

Early representation & processing of im-
ages

A common theme underlying explanations of
neural population architecture in V1 has been in

terms of efficient codes that exploit the redundancy
or regularities in natural images. For example it has
been shown that neural response properties, such
as orientation and spatial frequency tuning in V1
neurons, may be accounted for in terms of a sparse
coding strategy adapted to the statistics of natural
images (Olshausen, 1996; Hyvärinen, 2010). Neu-
rons in primary visual cortex also show non-linear
divisive-normalization behavior in which responses
are inhibited by contrast variation outside the clas-
sical receptive field. Divisive normalization results
in a reduction of statistical dependencies (Schwartz
& Simoncelli, 2001), providing an efficient rep-
resentation potentially useful for discovering sus-
picious coincidences Barlow (1990). Both sparse
coding and contrast normalization have been ex-
plained in terms of an underlying generative model
of natural images called a Gaussian Scale Mixture
model (Wainwright & Simoncelli, 2000).

How do orientation- and spatial-frequency-
selective spatial filter descriptions relate to visual
behavior, to object perception, and to information
and computations needed for higher-level areas?
There are many answers to these questions depend-
ing on task, but the key step is to interpret neural
population activity as representing a space of hy-
potheses about the causes of the stimulus (e.g. ob-
ject boundary), rather than the stimulus itself (e.g.
change in intensity). Here we focus on edges and
surface regions, with a Bayesian view to under-
standing V1’s role in object recognition.

From local spatial filters to edges. Hubel &
Wiesel provided one clear functional interpretation
of primary visual cortex (V1)–that a population of
orientation-tuned simple and complex cells could
represent an edge or line (Hubel, 1982). While
there is wide consensus that information about ori-
entation, as represented in neural populations of
orientation-selective neurons, is a fundamental as-
pect of early visual spatial processing, exactly how
such information is used to reliably determine ob-
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Level 1

Level 2

Level 3

Level 4

Level 5

Figure 5. Examples of the mean shapes of visual concepts automatically learned for multiple objects with part sharing
between objects (Zhu, Chen, Torralba, et al., 2010). The first few levels (1-3) are generic and higher levels (4 and 5)
contain more specific concepts. or object parts, which occur for a limited number of objects.

ject properties, such as contour boundaries, or inter-
nal textures is still a challenging problem.

Given certain assumptions (Poisson-like spiking
behavior), the pattern of activity across a popula-
tion of orientation-tuned neurons can be assumed
to represent the likelihood of orientation, and thus
provide the basis for Bayesian decoding of edge
orientation (Pouget et al., 2000). However, deter-
mining whether such an edge is part of an object
boundary requires additional inference. Natural im-
ages are full of local edges, many due to accidents
of illumination, occlusion, and background clutter.
Distinguishing those which belong together as part
of an object of interest likely requires a combina-
tion of lateral (within a cortical area) and top-down
(between cortical areas) interactions. Local com-
putation could be based on natural, local smooth-
ness constraints (i.e. priors) on object bound-
aries (Geisler & Perry, 2009) to link nearby edges

of similar orientation (Figure 6) (for relationship
to independent coding see Garrigues & Olshausen
(2008)). However, several decades of computer
vision studies have shown that local, lateral con-
straints are insufficient, and top-down processes that
incorporate intermediate-level, gestalt constraints
(parallels, symmetry), and object-specific informa-
tion are required for robust segmentation (see the
intermediate-level generic, and later shape-specific
visual concepts in Figure 5). Neurophysiological re-
sults are increasingly consistent with this view (cf.
McManus et al., 2011). We return to the question
of hierarchical representations of object knowledge,
and how feedback may interact with edge represen-
tations later.

From edges to surface regions. The visual sys-
tem is sensitive to shape as well as to surface prop-
erties of color, reflectance, and texture. An open
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question has been whether regional surface proper-
ties are represented in a dense retinotopic format.
An image-like representation of surface properties,
shape and reflectance, could support more robust
matching of input to higher-level templates. Could
such a representation exist in early topographic vi-
sual areas, such as V1 or V2?

Neuroimaging experiments have shown that hu-
man V1 responds to lightness change, a correlate
of reflectance, almost as strongly as it does to lu-
minance change, and in V2 just as strongly (Boy-
aci et al., 2007). Using the same kind of stimulus,
work in anesthetized monkeys has found luminance
responses to temporal changes in spatially uniform
regions to neurons in cytochrome oxidase blobs of
primary visual cortex (V1), and responses to illu-
sory lightness in cells in the color-activated regions
(thin stripes) of V2 (Roe et al., 2005).

To represent reflectance, however, the visual sys-
tem would have to solve a non-trivial inference
problem. The first is that reflectance, shape, and
illumination (“intrinsic images”) are all confounded
in the (luminance) image. Solving this problem re-
quires prior knowledge of the spatial regularities
of the intrinsic images. For example, reflectance
could be roughly approximated as piece-wise con-
stant, shape as piece-wise smooth, and illumination
as smooth. One way to characterize these properties
is through measurements of statistics on intrinsic
images. One recent model factors out all three in-
trinsic images by using priors from objectively mea-
sured intrinsic images (Barron & Malik, 2012).

There is evidence for mechanisms that smoothly
“fill-in” surface color between boundaries (Ko-
matsu, 2006; Lee & Yuille, 2006), suggesting neu-
ral processes that assume smoothness to construct a
map of surface color. Graph structures such as illus-
trated in Figure 6A can be used to describe smooth-
ness priors on reflectance. Given some nodes ini-
tialized with reliable measurements (e.g at edges),
missing or noisy values can be smoothed out by in-
terpolation. There are a number of algorithms to

do this, (cf. Gibbs sampling and MCMC meth-
ods in MacKay, 2003). Edges can be made explicit
as random variables, called “line-processes”, which
have their own 1D smoothness priors, and when
coupled with the regional surface process, serve to
break neighborhood relations (see Figure 6B and
(Koch et al., 1986; Kersten, 1991)). Whether and
how such algorithms are neurally implemented is an
open question. Distinct populations for boundaries
and regions together with linking mechanisms have
been proposed (Grossberg & Hong, 2006; Roe et
al., 2005), however further experiments are needed
to determine if and how such neural populations in-
teract within and across visual areas. MRFs can also
be used to model the strength of spatial grouping of
features and parts at more abstract levels in a visual
hierarchy. This is discussed in a later section.

A final problem is that the perception of light-
ness is sensitive to 3D layout of surfaces, (Gilchrist,
1977), suggesting that reflectance computations re-
quire non-local computations. For example, occlu-
sion can interpose one surface over another, spa-
tially separating image regions with the same un-
derlying reflectance. There is evidence that, as early
as V1, regions spatially disconnected by occlusion,
with similar but different luminances are grouped
together as a surface with a common lightness (Boy-
aci et al., 2010). It is possible that both lateral
MRF-like, and top-down mechanisms are involved
in early lightness computations, suggesting interac-
tions in the cortical hierarchy.

Top-down, bottom-up interactions

What is the evidence for top-down/bottom-up
Bayesian computations over hierarchical represen-
tations in human perception? Let’s consider what
this question might mean. An advantage of gen-
erative models is that they allow for flexible infer-
ence. Consider the three-level hierarchical graphi-
cal model shown in Figure 7A. Even for this sim-
ple model, there are a large number of possible in-
ferences depending on which variables are known



12 D. KERSTEN

si

sk

si

li j sj

Ii

Ij

A B C

Figure 6. Markov Random Fields (MRF) can be used to
model smoothness and piece-wise smoothness in image
intensities or intrinsic images. The nodes represent ran-
dom variables and the links the relationships. A. An undi-
rected graph representing a Markov Random Field. The
probability distribution of si depends only on variables in
a predefined neighborhood (e.g. in this example, the four
nearest neighbors, dashed nodes). Prior probabilities on
smoothness and piece-wise smoothness constraints can be
represented with this kind of graph. B. An MRF with
explicit line processes that when switched on break the
neighborhood relations. C. An MRF where the values to
be estimated are linked to the image measurements, Ii.

and which are integrated out. For example, sup-
pose the task requires estimating the top-level value
m representing an object category. The MAP so-
lution would be to find that value of m which
maximizes p(m|I1, I2). This could be achieved
with a purely bottom-up algorithm with the mid-
dle variables, s1, s2, integrated out from the poste-
rior, p(s1, s2,m|I1, I2). Further, as noted earlier in
the discussion of cue integration, a distinctive as-
pect of a Bayesian solution is to integrate the im-
age measurements based on full knowledge of the
uncertainty represented by the posterior. On the
other hand, suppose the category m is known (from
some other source of knowledge), and one wants
to estimate the middle parameters, s1, s2, represent-
ing possible shapes within a specific category m′.
The MAP solution would be to find s1 and s2 that
maximize p(s1, s2|I1, I2,m′). An algorithm could
use generative knowledge, that p(s1, s2|I1, I2,m′) ∝
p(I1, I2|s1, s2)p(s1, s2|m′). Note that the factors on
the right hand size use knowledge both of how the
category influences shape, and of how shape in-
fluences the image measurements. Below, we dis-
cuss a related third possibility, “Bayesian coarse-to-

fine”, in which the first priority is to make an accu-
rate high-level decision, followed by estimation of
lower-level parameters. “Explaining-away” is an-
other kind of inference which uses top-down gener-
ative knowledge, also discussed below (Figure 3B).

Currently there is no direct evidence for neu-
ral populations representing hypotheses rather than
decisions, or for probabilistic computations (as in
message passing). However, there are behavioral
and neuroimaging results that are suggestive of
Bayesian computations at different levels of abstrac-
tion, and between cortical areas. We briefly mention
some of them.

s
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Figure 7. A. A simple hierarchical graphical model.
Values of a discrete random variable at the top level of the
hierarchy represent “model” choices. Various models rep-
resent various categories of lower-level parameters. De-
pending on the task, some nodes are fixed (either through
measurement at the lowest level, or through prior deci-
sions, attention, or priming at the highest, model level),
others get integrated out, and others are estimated. For
example, the network can be run in a generative fash-
ion where samples, I, are drawn conditional on model
choices, m. B. “Conditioned perception” (Stocker & Si-
moncelli, 2008), is the particular sequence of marginal-
ization where: 1) intermediate-level parameters are inte-
grated out, and the high-level model values estimated (the
dashed arrow shows the direction of inference), and then
2) the value of the inferred model is held fixed and the
parameters are estimated.

Bayesian coarse-to-fine. A hierarchical architec-
ture allows for “Bayesian coarse-to-fine” processing
in which an initial high-level inference, at a coarse
level of abstraction, constrains a subsequent finer-
grained analysis of lower-level features. It is well-
established that certain visual decisions (“animal
present or not?”) can be made extremely fast (Rous-
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selet et al., 2004). This is consistent with the above
flexible Bayesian-style architecture, in which de-
cisions are effectively confidence-driven. For ex-
ample in the AND/OR baseball player models, hy-
potheses can be rapidly propagated bottom-up, and
if there is little uncertainty at the lower levels, there
may be no need for top-down removal of false hy-
potheses. However, in the process the top-down in-
formation can help to specify the precise positions
of the baseball player’s boundaries (and sub-parts).
More generally, Bayesian hierarchical models can
allow reductions in uncertainty at a high-level of ab-
straction to later affect decisions at lower levels.

Perceptual decisions can be automatic, driven by
strong, reliable context evidence (either spatial in-
formation elsewhere in the image, or temporal as
in priming) or consciously task driven and specified
by some even higher-level “executive”. Both strate-
gies are consistent with a coarse-to-fine computa-
tion in which a high-level decision “fixes” the value
in the upper level of a hierarchical model, constrain-
ing or biasing subsequent lower-level decisions. An
optimal decision restricted to a high level requires
marginalization over intermediate-level parameters.
We brief describe several behavioral results which
are consistent with Bayesian coarse-to-fine compu-
tations over a simple hierarchical graph structure
(see Figure 7).

Knill (2003) showed that, when estimating sur-
face orientation from texture cues, the visual sys-
tem uses different texture models depending on ev-
idence in the image or non-linearity weighting of
cues. The model types, texture orientation param-
eters, and image measurements (cues) can be rep-
resented at the top, middle, and bottom levels of
the hierarchy, respectively. The system usually in-
terprets a 2D texture as caused by an underlying
isotropic 3D texture. However, textures may also be
anisotropic. Human surface judgments were well-
modeled by a Bayesian observer that uses a texture
cue to make a coarse inference to decide the tex-
ture model type, and then applies this model to in-

terpret the texture cues. Other work has shown that
humans infer causal structure (i.e. “common or in-
dependent sources?”) when integrating sound and
visual stimuli to estimate direction, consistent with
Bayesian estimation (Körding et al., 2007; Shams,
2010). Human perception of complex motion fields
is also consistent with Bayesian selection of motion
type (rotation, expansion, translation) influencing
discrimination performance (Wu et al., 2008).

Human biases in motion direction estimation fol-
lowing a conscious classification decision (Jazayeri
& Movshon, 2007), have been also been explained
in terms of model selection (Stocker & Simoncelli,
2008), Figure 7B.

Top-down prediction. Top-down hypotheses can
compete to explain data. The Bayesian graphi-
cal interpretation is shown in Figure 3B. A num-
ber of perceptual phenomena, in which contextual
changes drastically change local visual interpreta-
tions, are consistent with “explaining away” (Ker-
sten et al., 2004). There are several ways in which
the representation of the probability distributions
could change. In the earlier computer vision base-
ball example, top-down processes suppressed false
hypotheses at a lower level, keeping those consis-
tent with the larger picture emerging as a conse-
quence of message passing. Another strategy is
“predictive coding” in which sn+1 is a provisional
guess at stage n + 1 that can use generative knowl-
edge, f , to predict the input, sn, of an earlier stage n.
If the prediction error, |sn − f (sn+1)| is small (repre-
sented by low neural activity), the likelihood is high
and the hypothesis is a good fit; if not, another hy-
pothesis needs to be tried (Rao & Ballard, 1999; Lee
& Mumford, 2003; Yuille & Kersten, 2006; Friston
& Kiebel, 2009).

There is growing evidence from human fMRI
studies for context-dependent suppression of neural
activity in an earlier area in certain cases (Murray
et al., 2002; Summerfield et al., 2006; Fang et al.,
2008; Alink et al., 2010; Rauss et al., 2011; Cardin
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et al., 2011). However, the spatial resolution of
fMRI is too coarse to tell whether reduced activ-
ity may be due to suppression of false Grossberg
(1999) or true hypotheses Rao & Ballard (1999). In
fact, because of different functional requirements,
the suppression of lower-level false and true hy-
potheses could both be occurring. A top-down at-
tentional task might suppress competing lower-level
ambiguous hypotheses in order to select true hy-
potheses relevant to the task Grossberg (2007). But
the system may also rely on automatic processes
to detect new information that does not fit with
the current interpretation. The first strategy corre-
sponds to executive, top-down (“endogenous”) at-
tention, and the second to stimulus-driven, bottom-
up (“exogenous”) attention (Desimone & Duncan,
1995; Petersen & Posner, 2011). Thus there may
be two types of neural populations, those whose ac-
tivity codes errors, and those whose increased ac-
tivity represents increased confidence in local fea-
ture hypotheses coded in that area (Friston, 2005).
Thus, enhancement of consistent features could be
accompanied by suppression of false positives in
one population, but consistent features suppressed
in another population. The laminar pattern of feed-
back connections raises the possibility that these
representations may lie in distinct cortical layers. A
recent study used ultra-high field fMRI with sub-
millimeter resolution and found stronger fMRI re-
sponse in middle cortical layers of V1 during the
presentation of scrambled objects as compared with
intact objects (Olman et al., 2012), similar to what
one might expect from error units.

Egner et al. (2010) proposed that distinct popula-
tions of “representational” units (feature detectors)
and “error” units could be activated independently
by behavioral manipulations of expectation and sur-
prise, respectively. They manipulated expectation
by training with cues that were diagnostic of the ap-
pearance of either a face or a house on a given trial.
The subject’s task was to detect an occasional and
thus surprising, upside-down face or house. The au-

thors were able to account for the pattern of results
in human fusiform face area in terms of a sum of ac-
tivity due to separate populations of units whose ac-
tivity reflected expectation and surprise, rather than
by face-specific responses predicted by bottom-up
selectivity alone.

Conclusions and future directions

Although it was observed by Helmholtz more
than 100 years ago that perception is a process
of “unconscious inference,” developing and testing
quantitative models that embrace this idea has oc-
curred only recently. From this body of work we
have gained new insights about inferential processes
occurring in perception, and new ways of thinking
about neural computation in the brain. However,
achieving a full understanding of perception and its
neural basis will remain an important and challeng-
ing problem for the future. A major aspect of the
problem is that there is no consensus on what the
overall neural or psychological constraints on a gen-
erative or inferential model should look like. We
have presented the case that hierarchical, compo-
sitional models are necessary (Geman et al., 2002;
Feldman, 2009); however, it is unclear what the lev-
els should represent (truth values vs. distributions
on hypotheses) and what kinds of computations are
done over them (decision sequences vs. propagating
hypotheses and updating distributions). Variables in
a level may represent higher-order image statistics,
or they could (also) have accessible semantic inter-
pretations, such as “edge”, “curved line”, “limbs”,
and “baseball player”.

Models of image generation must eventually cap-
ture the flexibility of humans to interpret images
that deviate substantially from natural, real-world
experience. Human perception is almost never
stumped–it always comes up with an interpretation,
even if bizarre, wrong, or self-contradictory (con-
sider a Dali painting, a cartoon, or a video game).
While developing probabilistic models on graphical
representations is an important direction, the need
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for an even richer structure has been recognized in
proposals for image grammars (Mumford & Desol-
neux, 2010) and probabilistic programs (Goodman
et al., 2008).
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