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Abstract

Ideal observer models are applications of Bayesian Statistical Decision Theory to
problems of neural information transduction, transmission and utilization. A basic
motivation is that because sensory inputs provide noisy or ambiguous information
about states of the world, probabilistic methods are required to understand how reliable
decisions can be made. Thus the focus is first on modeling the information for a task,
independent of the observer under study, and second on comparisons of that model
with a test observer, such as a human or neuron. A key rationale for such comparisons
is that the ideal observer can be used to normalize performance for task difficulty. An
ideal observer can also provide a starting point for modeling perceptual performance.

Keywords: sensation, perception, psychophysics, Bayesian theory, signal detection theory,
ideal observer

Ideal observer theory (in-press), The New Encyclopedia of Neuroscience, edited by Larry
Squire et al., 2008.

Introduction

An ideal observer is ideal in the sense that it achieves statistically optimal performance for a
specified task. It makes the best decisions or estimates given uncertain sensory information
and prior knowledge. What is “best” is specified in terms of costs and benefits. Ideal
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observer models can be used to study different types of real “test observers”, such as in the
psychophysical analysis of the input/output behavior of humans, to spike-train analysis
of information carried by single neurons. If human perceptual performance approaches
that of an ideal observer, this can in principle rule out a large class of candidate neural
mechanisms that are suboptimal relative to the ideal. Although the ideal observer concept
can be traced to earlier work, the modern notion of an ideal observer was developed in
the 1950s by Peterson, Birdsall, Fox, Tanner, Swets, and others in the context of a general
theory of signal detectability. The theory and its initial applications to human auditory
and then visual sensitivity are described in a classic 1966 book by Green and Swets. In
the late 1970s, Horace Barlow applied ideal observer analysis to higher-level perceptual
tasks, such as the perception of symmetric patterns. By the 1990s, comparisons of human
and ideal performance were extended to an increasingly wider set of problems, including
object and motion perception, perceptual organization, reading, and motor control. Ideal
observer analysis has shown, for example, that the way in which human observers integrate
depth or motion information takes into account uncertainty in the input image cues, as
one might expect from an ideal observer doing the same task.

Defining the ideal observer

The key ingredients in defining an ideal observer are: 1) the generative model; 2) the task
requirements, including a measure of performance; and 3) an observer model that specifies
the optimal action rule for the given task requirement. The ideal observer can be defined
in terms of four classes of random variables on a directed graph (i.e. one with arrows) that
represents how the variables influence each other, see Figure (1). These variables represent
states of the world s, observations (data) x that result, actions a (e.g. decision or estimate)
on the data, and the losses (costs) L(a, s) of action a, given the true state s. The spaces
can be discrete or continuous. For example, a state of the world could mean one of two
positions of a light switch, or the distance of an object. An action may be only indirectly
related to the state, e.g. when throwing a ball, the speed of release of the ball aimed at a
distant target vs. an estimate of the state itself (distance). We now go over the elements
in greater detail.

The generative model specifies how the states of the world, s, determine the observed
data x, i.e. sensory input (e.g. pattern of image intensities). The state space can be
discrete or continuous. In general, states and data are multidimensional, s = (s1, s2, s3, . . . )
and x = (x1, x2, x3, . . . ) and the relationship between states and data can have complex
dependencies (a simplified example is shown in Figure 1B). The generative model consists
of the prior probability of the state s, p(S = s), and the probability of the observation
x given s, p(X = x|s). The prior probability can be simple, representing the probability
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Figure 1: A. Components of an Ideal Observer. The nodes represent random variables,
and the arrows how they influence each other. The arrows in the graph (formally, a
directed acyclic graph) can be interpreted as describing the dependencies between vari-
ables. The graph structure determines how to factor the joint distribution for the task,
p(s, x, l, a) = p(l|a, s)p(a|x)p(x|s)p(s). From this, one can formalize the problem of esti-
mating components, such as the probability of a loss value p(L = l) (e.g. probability of
error L = 1), or other performance measures, such as the hit rate p(L = 0|sH), or false
positive rate p(L = 0|sL) for “signal” state sH and “noise” state sL. B. The state and
observation space can have complex dependencies. This panel shows an example in which
state variables S1 and S2 both influence observation X1, but only S2 directly influences
X2. Solid lines indicate the generative model, and the dashed lines the directions of (in-
verse) inference for two tasks. Suppose the goal is to estimate S2, then both observations
determine the optimal estimate (blue dashed lines). This is an example of cue integration,
where the two observations are conditionally independent of S2. If the goal is to estimate
S1 , both observations again determine the estimate, but X2 indirectly affects beliefs about
S1 through S2 (red dashed lines). This is an example of “explaining away”. The graph
structure is equivalent to the factorization p(s1, s2, x1, x2) = p(x1|s1, s2)p(x2|s2)p(s2)p(s1).
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of an hypothesis with just two values, such as a light switch being set to high S = sH
rather than low S = sL. But the prior probability on s can also be used to model complex
pattern regularities that take into account covariation between elements of s, such as the
probability of a surface tending to have smoothly varying, rather than rapidly changing
depths. In this latter case, validating the model for the prior from real world data can be
a significant problem by itself; however, in the lab, an experimenter can specify the prior.
The probability of an observation x given s describes how the signal s is “encrypted” in the
data, and is the likelihood of the hypothesis (the state s) given the data. The description
could be as simple as x = s+n, where x is light intensity, s is the average level of one of two
fixed light intensities, and n is a sample of gaussian noise. Then p(X = x|s) = p(x − s).
Or p(X = x|s) could be derived from a more complicated function x = φ(s, n), where
x is a vector representing an image, and φ is a function that describes how a shape s
together with a confounding variable n, such as viewpoint (or slant angle in the example
below), determine the image observation. In the context of a psychophysical experiment,
the generative model can be thought of as a probabilistic description of how the stimuli
are generated.

The task requirements are two-fold: 1) what is to be done with the data, e.g. detect
the presence or absence of the signal (e.g. “high vs. low contrast?”, or “animal present or
not?”), identify the signal (e.g. “ which letter “A” , “B”, or “C”?), estimate a continuous
value (e.g. what is the depth of the object?); 2) the value of achieving or not achieving
the goal. Not all elements of the state variable, s = (s1, s2, s3, . . . ), are equally important
to determine accurately. In classical signal detection theory, state variables are divided
into two types: the relevant variables to be inferred accurately (“signals” ), and those to
be discounted (“noise”) with associated losses for right and wrong answers. Generally, the
value of accuracy can be expressed in terms of a “loss function” (alternatively a “gain”
function, equal to one minus the loss function.) For example, different degrees of relevance
can be placed on the state variables by specifying a loss function, L(a1, a2; s1, s2) which
puts a cost on choosing actions, a1, a2, when the true states are s1 and s2. If the action
is an estimate of s, a = ŝ, loss may be expressed in terms of differences, L(ŝ− s) (see loss
function panel in Figure 3).

Optimal action or decision rule. Of the many possible observer models, the ideal
observer is defined as one that uses an action rule, a(x), that minimizes the risk for the
task. The expected risk is defined as the loss averaged over both state and observation
variables: R(a) =

∑
s,x L(s, a(x))p(s, x). For a given observation, x, the decision rule is

to choose action a so as to minimize R(a|x) =
∑

s,x L(s, a(x))p(s|x). Often the action
space has a simple relationship with the signal state space. For example, in a detection
or discrimination task the state space is discrete and binary, and the action is to decide
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whether the signal was sent or not (answer yes or no to questions such as: “is Thomas
there?” or “is Thomas bigger than Simon?”). For identification, the state space is discrete
with multiple values (S = {Thomas, Simon,Hermann orJacob}), and the actions are
decisions based on x (“Is it Thomas? Simon? Hermann?, or Jacob?”). For estimation,
the action is an estimate of the state variable, a = ŝ from observation x (e.g. “how tall
is she?”). If the loss is uniformly high for all wrong decisions, and low for the correct
decision, then the optimal action is to pick the most probable state s given the data x.
This is the maximum a posteriori (MAP) observer: a(x) = argmaxs p(s|x). This rule yields
the smallest average error. If the loss is the squared error between state and estimated
state variables, then the optimal action is to choose the mean of the posterior. Next, we
illustrate task requirements with examples for detection and estimation tasks.

Applications of Ideal Observer Theory

One can distinguish two types of applications of ideal observer theory. For the purposes
of this article, we refer to the first as ideal observer analysis, where the test observer
(humans or neural system) competes against the ideal observer in the same, well-defined,
laboratory task. Because the experimenter controls the conditions for the stimuli and
task, no observer can do better (on average) for the specified task. In this case, the
performance of an ideal observer can be thought of as a benchmark against which to
measure human performance. The emphasis is on departures from ideal performance which
provide clues as to the underlying, generally sub-ideal, mechanisms. Ideal observer analysis
is a useful addition to the experimenter’s toolbox alongside linear and non-linear systems
analysis. Ideal observer analysis has been used to show that humans perform some tasks
with strikingly high efficiency relative to the ideal observer, but quite poorly for others.
One of the historic success stories was to show that human ability to discriminate light
intensity under night time viewing conditions could be extremely high. Following on the
work of Hecht, Schlaer and Pirenne in the 1940s, Horace Barlow showed in the early 1960s
that human quantum efficiencies were sufficiently high as to rule out any explanation that
required the retinal transduction of more than a few photons.

The second application of ideal observer theory is as an approximate theory or model of
performance. The primary distinction between the two applications is that the second typ-
ically makes simplifying assumptions about the generative model (see Estimation example
below), including the nature of the input representation (e.g. the ideal observer may have
geometrical features as input, whereas the human observer receives from image intensities
as input, from which geometrical information is derived), or how the data are caused by
the states of the world (e.g. gaussian noise is added, when the actual noise may be non-
gaussian). In other words, the ideal observer is optimal with respect to a generative model
that may differ in detail from the true generative model, either as defined in a particular

5



laboratory study, or real world task. The primary reason for these simplifying assumptions
is practical–the true ideal observer is too hard to calculate. Even though humans are in
general suboptimal, an ideal observer model may nonetheless go a long way to explain-
ing the observed behavior. In this second type of application, Ideal observer theories are
equivalent to Bayesian theories of perceptual performance. As a modeling tool, a gen-
eral advantage of the Bayesian ideal observer approach is that it avoids commitment to
untestable mechanistic details, such as a particular neural architecture, while still providing
quantitative predictions of behavior.

Terms Equations
Conditioning p(x|y) = p(x, y)/p(y)
Marginalization p(x) =

∫
p(x, y)dy

Bayes rule p(s|x) = p(x|s)p(s)/p(x)
Signal-to-noise ratio for equal variance gaussian case d′snr = µs−µn

σ

Relation of z & P z(P ) : P = 1√
2π

∫∞
z e−x

2/2dx

Sensitivity from false alarm and hit rates d′perf = z(PFA)− z(PH)
ROC in terms of z values for unequal variance case z(PH) = σn

σs
z(PFA)− µs−µn

σs

d’ for 2AFC from proportion correct d′2afc = −
√

2z(Pc)
Efficiency E = (d′snrI

/d′snrT
)2

Examples of Ideal observer analysis

Signal detection

Figure (2) illustrates a classic task in signal detection theory in which a switch is set to
“high” or “low” and the observer has to guess the setting based on an observation, in this
case a measurement of light intensity.

The generative model. The switch setting is the state variable. If the switch settings
are equally likely, independent of the data, then the prior is constant and equal to a half,
p(S = s) = 1/2. The second part of the generative model, the likelihood, specifies how the
observations depend on the state. Suppose that when the switch is set to high, the average
light intensity is higher than when the switch is low. However, because of trial-to-trial
fluctuations (noise), the measured or observed light intensity varies. So sometimes the
measured light intensity is higher for the “low” than the “high” switch setting. Note that
in ideal observer analysis, one may be able to test the validity of the generative model,
apart from questions of optimal inference. Thus, for example, the light switch model
assumes additive gaussian noise (although at low intensities where fluctuations in photon
emission and absorption may dominate, a Poisson model is a better choice.) The top panel
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Figure 2: Example of a simple ideal observer for a binary task, signal detection. A.
Schematic of the physical model in which a light source produces an observation x, of light
intensity. B. Graph showing causal dependencies corresponding to factorization in terms
of the components of the generative model: p(x, s, n) = p(x|s, n)p(s)p(n). The direction
of the inference for the detection task is shown by the dashed arrow. C. Top panel shows
the gaussian probability densities of the observation under the two hypotheses (switch
states), also known as the likelihood functions corresponding to different means, µL, µH .
The standard deviations are the same, σ. The bottom panel shows graphs of the posterior
probabilities. When the switch probabilities are not equal, choosing the highest likelihood
no longer produces the lower error rate. The ideal observer guesses the state with highest
posterior probability.
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of Figure (2C) shows the gaussian distributions of observations under the two possible
state conditions. The noise is additive because the high switch setting produces the same
distribution as that of the lower except that the mean is shifted by an added amount. The
standard deviation remains the same.

The task. Suppose that given an observation, the observer has to decide whether it was
due to a high or a low switch setting. Further suppose that the task requires that the
probability of error p(L = 1) be as small as possible. Loss is represented by 1 − δs,ŝ (the
Kronecker delta function, δs,ŝ, is one if s = ŝ and zero otherwise). Another common task
in psychophysics is the two-alternative forced-choice task (2AFC). The test (e.g. a human
subject) and ideal observers share the same state, observation, and action space, as well as
loss function (“scoring system”). In general, they differ in their mappings of observations
to actions, e.g. their decision rules.

The optimal decision rule. Intuitively, one would guess that the best strategy might be
to choose sH if p(x|sH) > p(x|sL), and in fact this is the optimal rule, for the constant prior
case, if one wants to have the smallest error rate. In our example, this rule is equivalent
to choosing sH if x > xc, where xc is the point where the two curves in the upper panel
of Figure (2C) cross each other. However, the general rule for minimizing error is the
maximum a posteriori (MAP) rule which takes into account the prior probability, and
picks the state with the higher posterior probability, i.e. choose sH if p(sH |x) > p(sL|x).
The posterior p(s|x) is determined by the prior and likelihood through Bayes rule: p(s|x) =
p(x|s)p(s)/p(x). If, for example, the prior probability of the switch setting “high” is bigger
than the probability of “low”, this is equivalent to moving the criterion to xm, i.e.: choose
sH if x > xm. (Compare the upper and lower panels of Figure 2C.) But there are other rules
depending on the loss function one chooses. The loss function is a 2 × 2 “payoff” matrix
with loss values for: “hit” (true positive), “false alarm” (false positive), “correct rejection”
(true negative), and “miss” (false negative). One can assign distinct losses to each of
these outcomes, in which for example, false alarms are more or less costly. In general, this
results in a different rule r based on minimizing the risk: choose sH if r(sH |x) > r(sL|x).
Standard results in signal detection theory show that for this problem, the optimal rule is
equivalent to: choose sH if x > xm, where the value of xm (the criterion) depends on the
loss matrix.

How to compare test and ideal observers? The test observer can perform no better
than the ideal, and in general will do worse, because of suboptimal action rules, such as
systematically failing to use all of the relevant information in the input stimulus. In this
specific example, an observer can be suboptimal by putting the criterion xm at the wrong
place–a “response bias”. As the criterion shifts, the values of the hit and false alarm
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rates also shift. A graph of hit vs. false alarm rates is known as the Receiver Operating
Characteristic (ROC). A key contribution of signal detection theory was to show that
underlying human sensitivity to a sensory signal (d′) could be teased apart from the value
of the criterion.

In theory, the ideal and test observer can be compared in terms of their “scores” (average
loss, e.g. proportion of errors) or d′perf given the same states and resulting observations.
However, it is often not practical to directly compare error rates (when the ideal is making
a modest number of mistakes, the test observer may be near chance and would thus require
too many measurements to estimate d′perfT

); alternatively one can compare state parame-
ters in the generative model that produce identical performances (e.g. sensitivities d′perfT

,
d′perfI

for test and ideal in an equal-variance gaussian noise detection task are determined
by the signal-to-noise ratios d′snrT and d′snrI ). Suppose, for example, that a human and
ideal observer both have the same proportion correct in a 2AFC task, then the ideal ob-
server can be used as a benchmark, where a standard measure of comparison is statistical
efficiency E = (# samples required by ideal/# samples required by test observer). In
the case of additive gaussian noise, this is equivalent to E = (d′snrI

/d′snrT
)2. If the noise is

the same, efficiency takes on the simple form of the ratio of the squared threshold values
of the ideal to the human. In the case of detecting an image pattern in additive gaussian
noise, an observer can be suboptimal by failing to use all of the image samples (pixels), or
by performing as if there was additional noise. These two sources of suboptimality have
been teased apart in psychophysical experiments, measured in terms of calculation (or cen-
tral) or transduction efficiencies. Efficiency provides a unit-free measure of performance
that allows for the stimulus complexity and task constraints.

Estimation

Perception is critical to a wide range of tasks, of which signal detection is just one. Consider
the problem of determining the dimensions of a three-dimensional object from a two-
dimensional projected image. In this case, a major source of uncertainty results from loss
of information due to projection. Figure 3 illustrates a Bayesian ideal observer model for a
simple task to estimate the height and slant for a class of elliptical disks. Given an elliptical
shape on the retina, what object could have produced it? It could be an elliptical disk,
but a flat circular disk could also produce an elliptical image.

The generative model. For simplicity, assume that the “world” consists of elliptical
disks of width equal to one, but with various heights h. These disks can have various
slants, α, with respect to a viewer. The states are continuous, and can be represented by,
s = (s1, s2) = (h, α). One can hypothesize a prior, p(s) = p(h, α) on these values. Figure 3
shows the graph of a bivariate gaussian prior that assumes the average slant is π/4 and the
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average height is 1. If viewed from a far distance, the width of the projection of any disk
from this state space is a constant value (say 1); but the height of the projection depends
on both the true height of the disk and the slant. An observation of the height, x of the
retinal image provides data that constrains but, without additional information, does not
uniquely determine the possible states. In the previous example, uncertainty resulted from
added gaussian noise. Here, although we assume some additional measurement noise, the
critical uncertainty results from the property that the surface could be slanted away from
the viewer by various unknown degrees. For a distant view, the image observation x can be
approximated as x ∼ h cos(α)+n. Assuming gaussian noise, this determines the likelihood
function, p(x − h cos(α)), where p(n) = e−n

2/2σ2
/(σ
√

2π) is the standard formula for a
gaussian distribution with zero mean.

The task. Given an observation, say x = 1/2, the ideal observer needs to determine the
height and slant with the least risk. Figure 3 illustrates the steps. It first computes the
likelihood of the observation for all possible values of the state variables. The likelihood
has a high ridge of constant height, meaning that there are infinitely many pairs of values
of height and slant that are equally likely. Thus, for example, a height of 4 inclined at 83◦ is
no less likely than a head-on slant of zero together with a height of 1/2. This ambiguity can
be resolved by multiplying the likelihood by the prior distribution to obtain the posterior
distribution, p(h, α|x). At this point, one could stop, and pick off the peak values of the
posterior as the most probable values of height and slant. This would correspond to the
decision rule for the MAP observer, described above. However, suppose the task is more
complex, requiring greater precision, let’s say, in estimating the slant than the height.

The optimal decision rule. In this more general case, we use a rule that minimizes
risk. A simple model of risk is to define loss in terms of the absolute values of the errors,
i.e. the difference between the true and estimated state variables. Then assign a uniformly
low loss to errors of height that fall within a wide range, but penalize slant errors more
narrowly, as shown by the loss function in Figure 3. The risk is then a convolution of the
loss function with the posterior: R(h, α|x) =

∫
p(h′, α′|x)L(h − h′, α − α′)dh′dα′, and the

decision rule is to pick the pair of state variables corresponding to the lowest values of R.
It is straightforward to show that if the tolerance to errors in height and slant are infinitely
wide and narrow, respectively, then height effectively drops out of the risk, and minimizing
risk corresponds to MAP estimation on the marginal posterior, p(α|x).

How to compare test and ideal observers? Even if human estimates differ in detail
from an ideal observer model, one can still test the degree to which information is opti-
mally combined. Consider the posterior term, which is proportional to the product of the
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likelihood and prior terms. The ideal observer combines the image cues and the prior in-
formation in such a way as to take into account the reliability of each of the sources. Thus,
smaller variances on the prior would bias the final estimate toward the prior means, and
conversely highly reliable (e.g. noise free) image data would move the estimates of slant
and/or height toward values consistent with the data. Task differences also affect shifts in
the optimal estimates of the state variables. Although this example illustrates the balance
between prior and likelihood, there is a similar trade-off in the case of cue integration. For
example, if there was additional information for the slant of the surface (e.g. a texture
gradient), then the ideal observer would combine and weight the cues according to their
reliabilities. For the case of conditional independence and gaussian noise, the optimal cue
weighting is given by: sopt = s1r1

r1+r2
+ s2r2

r1+r2
, where si is the estimate of the state variable

from cue i, and ri is the reciprocal of the variance for that cue.

Related areas

Ideal observer theory has close connections to several other areas of neuroscience and
cognitive science. Optimal control theory has a similar structure to that illustrated in
Figure (1)A. In applications to motor control, the state variables change continuously in
time and correspond to internal physical parameters that influence a movement. The Bayes
risk function is replaced by a cost function (e.g. physical energy of a movement), and the
action rule is replaced by a control law.

Ideal observer analysis can be naturally extended to optimal learning. Bayes optimal
learning corresponds to updating the parameters (e.g. mean and variance) of the posterior
distribution as new data comes in. Rather than using the data to infer the causes or states
of the generative model, one uses Bayes rule to learn the values of the parameters that
determine the posterior.

Computational techniques such as expectation-maximization (EM) and Bayesian belief
propagation, have provided the means to deal with more complicated and non-gaussian
generative models, with applications to inference and learning. Future work should pro-
duce a growing number of applications to the experimental study of cognitive and neural
processes.

Comparisons of ideal and human perceptual behavior inevitably lead to the question of the
nature of the underlying neural mechanisms that would support ideal-like computation.
One of the central issues is how information about uncertainty may be represented and
processed in the nervous system.
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