
~rency and the 
Cooperative Computation 
of Scene Attributes 

Daniel Kersten 

15 

Cooperativity and Integration 

A major goal of vision research is to understand how the 
brain constructs a perceptual model of the visual environ­
ment from the pattern of changing retinal light intensities. 
Even in the absence of motion, a pattern of intensities in 
a natural image is interpreted as due to changes in mate­
rial, illumination, depth , or viewpoint with no apparent 
effort. How is this done and what are the computational 
principles involved? It will be argued that an essential 
component of perception under natural viewing condi­
tions is the process of finding multiple representations of 
scene characteristics that must be consistent with each 
other. The perception of transparency provides a simple 
example of computing multiple and consistent representa­
tions and is the focus of the rest of this chapter. 

In general, computational vision research has modular­
ized the problem of computing perceptual scene models 
from image data . Examples include surface-color-from­
radiance (Land, 1959), shape-from-shading (Hom, 1975), 

and structure-from-motion (Ullman, 1979). A primary re­
sult of computational analysis is that scene reconstruction 
from image data is often underconstrained-there are 
many solutions that satisfy the data provided by the 
image . Prior constraints, such as assuming that surfaces 
or reflectances are smooth, then have to be sought to 
find a unique interpretation of the environment from the 
image intensities . Although strong constraints may be 
required for impoverished viewing conditions, in general 
one would like to relax prior assumptions without losing 
uniqueness . It is useful to distinguish two strategies­
integration and cooperativity- that become useful when 
the image content becomes complex as under natural 

viewing conditions. 
Integration refers to the combination of input informa­

tion or cues pertaining to a particular scene attribute, such 
as depth at a point, from a variety of sources such as 
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motion, stereo, and shading as shown in the top of figure 
15.1 (Bi.ilthoff & Mallot, 1987; Chou & Brown, 1988; 
T erzopoulos, 1986 ). In cooperative computation, the esti­
mates of two or more scene attributes (such as depth 
and transparency) are required to be consistent with each 
other and with constraints on natural imaging (bottom of 
figure 15.1). A scene attribute can be represented as a 
spatially indexed map or "intrinsic image" (Barrow & 

Tenenbaum, 1978). One approach to computing scene 
attribute maps is to label edges in an image according to 

the cause in the scene (Poggio, Gamble & Little, 1988). 

The computer detection of useful edges in natural images 
has turned out to be more problematic than at first anti­

cipated. In addition to coping with multiple spatial scales 
and image noise, a useful edge detection must ultimately 

label edges according to the source in the scene. Changes 
in image intensity can be due to scene discontinuities such 

as shadows, surface self-occlusion, occlusion of one sur­

face by another, reflectance change, and texture change. 
For example, if one primary goal of vision is object 
recognition, the explicit representation of surface boun­

daries and orientation discontinuities may be particularly 
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The distinction between integration of cues to compute a single 
scene attribute representation, and cooperativity-the computation 
of several scene attribute representations that interact. 
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critical (Biederman, 1987). But there are many changes of 
intensity in natural images that are not useful for finding 
object boundaries. Examine a good line drawing made by 
an artist-almost all the edges represent object or mate. 
rial boundaries, and very few represent shadows. An artist 
makes complex inferences in order to filter out uninforma­
tive edges while sketching. 

A classic example of cooperative computation that 
may involve edge detection and labeling is the problem 
of lightness constancy. One approach is to classify edges 

according to whether they are reflectance or illumination 
changes (Gilchrist, Delman & Jacobsen, 1983). Although 
we now have a good understanding of the kinds of algo­
rithms that can filter out slow illumination changes from 
sharp reflectance changes (Grossberg & Todorovic, 1988; 

Hom, 1973; Land, 1959), the problem of image factoring, 

when both intrinsic images have discontinuities, is un­
solved. There is very little difference in the human estima­

tion of reflectance in complex Mondrians when they are 

behind a fuzzy shadow vs. a sharp transparency (Plummer 
& Kersten, 1988). This suggests that at some level, there 

may be common principles underlying splitting an image 
into representations of reflectance and illumination, or 

reflectance and transmittance . Understanding the interac­

tion between two such maps is only a start. Perceptual 

observations have shown that just two such interacting 

maps are in general insufficient to account for lightness 

perception. Ernst Mach showed over a century ago that 
the perceived surface lightness of a simple folded gray 

card, placed on a table, depends on the interaction be­

tween perceived light source direction, and the bistably 

perceived geometry of the card, that is, whether it ap­

pears convex or concave (Mach, 1886). One needs to take 

into account the cooperative interaction of shape, illumi­
nation, and material reflectance to arrive at a complete 

account of lightness phenomena . 

Studies of lightness perception have been plagued to 

some extent by ambiguity in both definition and psycho­

physical results (Beck, 1972). The root of the problem 

may be that perception of lightness and brightness de­

pends on the extent to which there is an accompanying 

unambiguous perception of a real surface. This depends 
on the state of the observer and the naturalness of the 

image. One way of getting around this problem is to 

require reflectance estimates, rather than lightness judg­
ments (Arend & Goldstein, 1987). This raises objections 

that reflectance judgments tap into inferential mechanisms 
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that are more part of cognition than perception . In this 
chapter I attempt to circumvent these issues by inves­
Hgating the perception of surface transparency. Phenome­
nal transparency may be a less ambiguous percept than 
lightness by virtue of the fact that it is more tightly 
coupled to surface perception. 

The next two sections of this chapter will treat first the 
percepHon and then the computation of transparency. 
The first section provides perceptual evidence that the 
problem of transparency, or "seeing through" one cause 
of image intensity to another, involves cooperative com­
putation. There are several components that interact. 
These include the various surface representations that 
have opaque or transparent attributes, the depth of these 
surfaces derived from other sources, and the relation of 
the contour shapes to the values of the regions they 
enclose. The problem of surface transparency, even in its 
simplest form, poses a number of unsolved computational 
and perceptual problems. In particular , it shows the power 
of human vision to incorporate global constraints , even 
when solving what may be an a priori local problem . 

The second section provides a computational analysis 
of a simplified model of transparency in which the goal 
of the computation is to arrive at two distinct spatial 
maps, one representing opaque reflectance values, and 
one the transmittances corresponding to a transparent 
component. Here cooperative computation is analyzed in 
terms of an "ideal image understander." The intention is 
not to provide a theory of human transparency percep­
Hon, but to illustrate the role of the statistical approach as 
a "quantitative computational theory " that encompasses a 
wide family of possible algorithms . This enables one to 
distinguish, at least in principle , between the correctness 
of the statistical model and the correctness of algorithms 
used to solve it. Purely local constraints are used to spe­
cify the statistical problem. Despite the inherent local 
nature of the constraints, purely local algorithms for com­
puting transparency are inadequate. 

Perception of Transparency 

Transparency has received relatively little attention com­
pared to other problems of image understanding. This 
probably reflects both the observation that simple surface 
transparency is rare in nature, and the anticipation that 
the computation of transparency is hard. From a general 

perspective, the problem of transparency may not be all 
that esoteric. For the purposes of this paper, the word 
transparency will be used to refer to the "seeing through" 
of one cause of image intensity to another at the same 
point. This is phenomenal, as distinct from physical, trans­
parency . Seeing through one cause to another is a general 
problem that arises continually in everyday viewing. Here 
are a few examples that can be distinguished on the basis 
of the physical origins. 

Specular transparency is a form of transparency in which 
a shiny or mirrorlike surface reflects some of the incident 
light with little diffusion, as with a polished apple. It is 
usually modeled as a component added to the matte re­
flectance of surface luminance. It is also commonly seen 
when looking through a window in which reflections off 
the glass add to the light coming through the window 
pane . Identifying specular transparency may be important 
to infer depth-either by discounting it in establishing 
stereo correspondence (Marr, 1982), or by using it to 
infer relative depth (Biilthoff & Blake, 1989). 

Film transparency is the familiar form of multiplicative 
transparency where a clear surface absorbs some fraction 
of the light without scattering it. This darkens the image 
of the surfaces beneath it (figure 15.2, left panel). Film 
transparency will be the prototypical example returned to 
below in the computational section. Multiplicative trans-

Fig. 15.2 

Left, A circular transparent patch over a vertical line. The circular 
patch is usually seen as transparent. This is an example of 
multiplicative transparency . Because the image formation constraint is 
symmetrical , there is no local information at X junctions to bias the 
edge labeling . Thus a computation based on local information should 
provide an alternative solution-the circular patch is opaque and 
behind two abutting transparent rectangles . This interpretation can 
be seen at times, and demonstrates the multistability of transparency 
perception . Right, Shadow transparency can be seen by the 
introduction of blur to the vertical edge . This changes the assignment 
of surface attribute to the circular patch. 
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parency is a good example of the inherent ambiguity that 
can arise when two images are combined with a sym­
metric operation. Although the circular patch in the left 
panel of figure 15 .2 can be seen as transparent and the 
rectangular regions opaque, sometimes the surface attri­
bute assignments are reversed. In fact, sometimes the four 
regions appear as they really are-all opaque. 

A strong impression of a depth-induced transparency can 
result when two random dot patterns move over each 
other in different directions. The visual system segregates 
the dots into two different depth planes, the nearer one 
appearing to be a perfectly clear, but dotted , transparent 
surface . An analogous effect can also be produced with a 
random dot stereogram . The brain seems to interpolate a 
surface between points of similar depths based on dis­
parity or motion directions and, to be consistent with 
seeing through the plane, gives the near surface the attri­
bute of transparency . From a physical point of view, this 
is a form of multiplicative transparency, with only binary 
valued reflectances and transmittances , which requires 
depth to be seen. 

Diaphanous transparency, or gauzy or sheer transpar­
ency corresponds to the case where the holes in a per­
forated occluder are below the viewer's spatial resolution 
limit, contributing an additive component to the light 
shining through. Under everyday viewing, one can have 
various combinations of film and diaphanous transpar­
ency . These combinations should be distinguished from 
translucency, where scattering hides the spatial structure 
of the stuff shining through. In a formal sense, additive 
transparency exists in any low-pass filtered representation 
of an image of multiple objects . For example , imagine 
viewing an object through a leafless bush. At low spatial 
frequencies the object intensities add to those of the bush. 
Another instance of additive transparency arises because 
of our limited depth of field. Borders of the images of 
close objects get smeared over distant objects that are in 
focus. 

For flat surfaces , sharp shadow boundaries are locally 
identical to multiplicative transparency induced by a dark 
film overlay (Metelli, 1975) . We call this shadow transpar­
ency to underscore this similarity. Although these cases 
appear phenomenally quite different-a shadow is an 
intensity change perceptually attributed to illumination 
and a dark film is attributed to a surface-some aspects of 
the underlying computational problems are similar. The 
simple addition of a fuzzy penumbra to an apparent sur-

face transparency is often sufficient to change the percep­
tion to a shadow (figure 15.2). With a more general model 
of shading where intensity is the vector product of sur­
face normal and illumination direction, computing sha­
dows is quite different from the problem of transparency 
and requires splitting or factoring the image into vector 
rather than scalar fields. 

From a formal point of view, occlusion is the limiting 
case of zero transparency. There is increasing evidence 
that occlusion information may be represented fairly early 
in the visual system (Nakayama, Shimojo & Silverman, 
1989) . There is also evidence that depth relations inferred 
from surface transparency must be represented at least at 
the same level as depth from motion (Kersten, Biilthoff & 
Furuya, 1989). 

Finally, we can see phenomenal transparency even 
when there is no real or simulated physical cause. We 
frequently have unfused binocular images when disparity 
gradients are outside our fusional limits. Most of the time, 
we do not notice that two different surfaces are actually 
visible at the same cyclopean point. This binocular trans­
parency may be seen when a near surface occludes part 
of each eye's view . These two surfaces can at various 
times appear to combine leading to perception of trans­
parency, or to compete for dominance, depending on the 
circumstances . 

Transparency Formation 

All of the above cases (except for binocular transparency) 
can be considered to result from the combination of at 
least two independent physical processes; for simplicity, 
we will consider opaque, R(x, y), and transparent, J(r,y) 
components. For film transparency, R(x, y) and I(x, y) are 
proportional to reflectance and transmittance, respective­
ly. The image L(x, y) is a function of these two : 

L(x, y) = f(R(x, y), I(x, y)) . 

This function provides an image formation constraint. In 
general, the image formation constraint is quite complex 
and requires a complete model of rendering and projection 
of objects (Magnenat-Thalmann & Thalmann , 1987). An 
analysis of transparency formation is found in Richards 
and Witkin (1979). For multiplicative film transparency, 
the function is the pointwise product of the opaque and 
transparent components. It is easy to see that in the case 
of multiplication, the image formation constraint will not 
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necessarily produce an image that looks transparent to us . 
Any image can be considered the product of an arbitrary 
nonzero image, and a suitably chosen cofactor . Phenomenal 
transparency assumes additional nonpointwise constraints 
on the nature of the substances that produce it . These are 
a priori statistical constraints. One example follows from 
the cohesiveness of matter. Clumpiness of similar material 
often produces smooth self-occluding contours. With a 
multiplicative image formation function, this assumption 
would produce "X' junctions at the crossings of the clump 
boundaries in R and I. The crossing of the two X edges 
will in general produce four intensities. The relations 
among these four intensities that give rise to the percep­
tion of transparency have been studied by Metelli (1974) 
and Beck, Prazdny, and lvry (1984). 

One simplification made here, and in the computational 
analysis below is to assume one transparent and one 
opaque component. Even a simple image could be com­
posed of two transparencies and an opaque surface. For 
example, two overlapping squares seen in the bottom of 
figure 15.7 could both be transparent. The human visual 
system seems to make the default assumption of opaque­
ness unless there is evidence to the contrary. Even when 
the transparency is bistable, the dominant percepts alter­
nate between two cases: If one edge of an X junction is 
seen as transparent, the other is opaque, and vice versa. 
It is rare to see both edges as transparent. The con­
ditions under which observers report multiple transpar­
encies have yet to be systematically studied. 

Transparency Detection 

A first and basic level problem is, given an image, does 
the evidence favor the hypothesis of a transparent sur­
face? The crossing of two boundaries provides one form 
of evidence for transparency, and has been the only one 
considered until recently. Given the right figural relations, 
to a first approximation transparency is seen if the in­
tensities at X junctions satisfy the constraint that the 
image was caused by multiplicative and/or additive com­
bination of two source images (Richards & Witkin, 1979). 
More exact models take into account the observation 
that the visual system is not sensitive to exact metric 
relations of intensities: rather, it respects the inequality 
relations derived from such a constraint (Metelli, 197 4). 

Further, under certain conditions, these relations need to 
be adjusted to allow for compressive nonlinearity be-
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tween subjective lightness and physical luminance (Beck 
et al., 1984) 

Can there be local depth information at an X trans­
parency crossing? It is useful to categorize one of the 
edges in an X junction with respect to qualitative changes 
of the intensities at the boundary of the other edge 
(Adelson, personal communication). For concreteness, 
imagine using a transparent film with a horizontal edge to 
cover the bottom half of two regions that are separated 
by a vertical boundary. The horizontal edge is attached 
to, or "intrinsic" to the bottom region of the image 
(Nakayama, et al., 1989). One can imagine this bottom 
film as either preserving or reversing the contrast polarity 
of the two regions separated by the vertical edge. A 
contrast-reversing surface does not in general tend to 
appear transparent, although it is physically realizable by 
a refractive element. Suppose the horizontal edge is con­
trast preserving. Then it can either lighten or darken the 
underling regions, or it could reduce or enhance the con­
trast at the vertical edge. For example, when the hor­
izontal edge of a neutral density filter crosses the vertical 
boundary, it darkens the intensity on both sides of this 
edge. A purely additive transparency lightens both re­
gions that it covers. Of particular interest is an edge that 
reduces contrast. Specifically, define a contrast-reducing 
edge to be one that lightens the darker of the two regions 
it covers, and darkens the lighter without reversing the 
contrast polarity. If the horizontal edge reduces contrast, 
there must be a vertical edge that darkens both regions 
while reversing contrast. Further, the horizontal edge, if 
considered attached to the top region, is contrast enhanc­
ing. This is defined as darkening the darker of two regions 
it covers, and lightening the lighter without changing 
contrast polarity . Surfaces attached to contrast-enhancing 
edges are not likely to be seen as transparent surface 
discontinuities. This provides a cue to edge attachment. 
These observations also suggest an ordering cue. In fact, 
the surfaces attached to contrast-reducing edges , if seen 
as transparent, tend to be seen in front in a monocular 
view (see figure 15 .7). The above analysis is consistent 
with how a contrast-reducing edge may be realized physi­
cally. The nearer surface may contribute both diaphanous 
and multiplicative components. Contrast-reducing edges 
cannot be produced by a simple binary multiplicative or 
additive operation, but require a combination of both. 

In the computational section below, it will be assumed 
that the combination function is a binary reversible opera-
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tion as one would find with a purely multiplicative or 
additive interaction. This leaves ambiguity at X junctions, 
and places more demands on global computation to de­
cide which edge is in front. If all junctions had a con­
trast-reducing edge, the computational problem of simple 
transparencies would be much easier. As pointed out 
above, the contrast-reducing edge would be a local sign 
identifying it with the nearer or transparent surface. 

Are sharp edges in an X junction necessary to see 
transparency? Figure 15.3 shows that surface transpar­
ency can be seen when a sharp edged figure is overlayed 
on a smoothly shaded object . X junctions are eliminated 
altogether in figure 15.4 , where depth information from 
stereo indicates transparency. Transparency can also be 
seen, if rather than X junctions, we have VJ junctions. in 
which there is a discontinuity in the derivative of one of 
the crossing lines. This can be seen in the bottom two 
panels of figure 15.8 when the center "book " is seen with 
its outside edges receding from the viewer. 

Is an X junction even sufficient for transparency to be 
seen? Figure 15.5 shows that transparency is not seen if 
there is only one X junction . If the same X junction is 
repeated and arranged appropriately, it provides a con­
sistent interpretation of a square transparent surface dem­
onstrating the global nature of transparency perception. 

In the computational analysis , the fact that X junctions 
are not necessary for the perception of transparency will 
be ignored. It will be assumed that local scene processes 
produce X junctions. This is not entirely unreasonable, in 
that occlusion may be treated as a special case of transpar­
ency. It will also be assumed that shapes are flat. Factoring 
out general shape and orientation representations is part 
of the problem of splitting images into scene attribute 
maps. Solving the problem of splitting images into two 
flat components is a first step. The observation that X 
junctions are neither necessary nor sufficient for the per­
ception of transparency emphasizes the importance of 
understanding the global factors that cooperate to com­
pute transparency . Even with X junction information 
locally available, simple local computations do not work 
to compute transparency. 

Contour Binding 

A second problem is how to integrate the local evidence 
to arrive at a global description of each of the multiple 
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Fig. 15.3 
Transparency can still be seen when sharp edges overlap smooth 

intensity variations. 

sources. This can be viewed as a process of perceptual 
organization in which one tries to globally bind pieces of 
the image that belong to one object based on a surface 
attribute. One important factor that contributes to bind­
ing is the contour shape. Figure 15.6 shows some exam­
ples adapted from Kanizsa (1979) in which the organiza­
tion into transparent and opaque parts depends on how 
we segregate contours . A model has to take into account 
statistical knowledge of how contours typically bend to 
arrive at an account of the likelihood of the various stable 
percepts. Of particular importance is the tendency, at an 
X junction, to assume that a discontinuity in a single 
physical cause is more likely to be straight than curved. 
Minimizing an integrated measure of curvature is one 
way to express this constraint (Kass, Witkin & Terzopou­
los, 1987) . One problem that arises immediately is decid­
ing whether to bind the four segments at an X junction 
together, at the cost of high curvature, or to bind pairs 
of segments (e.g., reflectance and transmittance changes) 
into lines of low or zero curvature. In the computational 
section below, curvatures are assigned discrete local pro­
babilities on a fixed lattice using Markov random fields. 
Multiple lines at a point are allowed only if they ha_ve 
different causes and are thus represented in different Ill · 
trinsic images. This problem underscores the need to per-
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Fig.15.4 
Depth from stereo is sufficient to induce perception of transparency 
even when the X crossings are covered by dark patches . 

Fig. 15.5 

One X junction does not necessarily induce phenomenal 
transparency. If a single X junction is repeated and arranged 
appropriately, an interpretation of a square transparent surface 
emerges. This illustrates the global nature of transparency perception . 
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Fig. 15.6 
Contours have a perceptual orientation momentum that determines 
how they bind across junctions . These demonstrations , adapted from 

Kanizsa (1979), show how the strength of apparent transparency 
in the presence of these grouping factors. There may also be an effect 

of symmetry. 

mit multiple edge directions at a point in models of early 
edge detection (Zucker et al., 1988) . 

Attribute Attachment 

A third problem is to attach the attribute of opaqueness 
or transparency to the surface components factored out. 
Sometimes the evidence at an X junction is informative; 
for example, contrast-reducing edges tend to be seen as 
transparent. If the combination resulted from a symmetric 
or commutative operation, and if the local evidence fa­
vors transparency, one has a more ambiguous choice. We 
have already seen in figure 15.2 that the perception of 
transparency can be multistable. Observers report seeing 
either the circle as transparent and the two rectangles as 

opaque, or the reverse, although there is a strong bias to 
seeing the circle as transparent. Observers sometimes see 
the entire pattern as it really is-an opaque figure in 
fairly uniform illumination-but seldom, if ever, see both 
circle and rectangles as transparent at the same rune. 
When shadow transparency is introduced by simply blur­
ring the vertical edge, the contour of the circle is seen as 
an opaque reflectance change on the background, rather 
than as a film transparency. A computational model must 
take into account both attribute assignment and its multi­
stability. In the computational section, the opaque and 
transparent components are represented by distinct spa­
tial maps. The ambiguity is represented by a symmetric 

image formation equation. 

Depth and Transparency 

Perceived depth affects surface attribute attachment. Simi­
lar to Mach's observations of the dependence of lightness 
on depth, perceived transparency depends on depth. If X 
junctions are covered, surface transparency can be seen 
with a stereo cue to depth (see figure 15.4). This suggests 
that depth, rather than intensity changes, should be the 
input to transparency computation; however, figure 15.7 

shows that intensity relations can also affect the ability to 
see depth from stereo. In a monocular view, the light 
rectangular ring is invariably seen in front of the darker 
ring due to the presence of a contrast reducing edge.1 If 
disparity cues are used to force the dark ring in front 
(seen by fusing the two right-hand panels with crossed 
eyes), observers report either rivalry or the rectangles 
marking the intersections as appearing opaque. Reaction 
times for seeing correct depth relations between two 
planes are longer if the observer initially perceives depth 
from transparency to be inconsistent with subsequent 
depth from motion or stereo (Kersten et al., 1989). Addi­

tional evidence of the importance of early transparency 
assignment is its apparent affect on motion coherence 
(Rarnachandran, 1989). Two superimposed square-wave 

gratings moving in different directions tend to be seen as 
moving in one coherent direction if the superposition is 
not seen as transparent. 

I. A monocular version of this figure was designed by Edward Adelson and 
demonstrated informally at the Cold Spring Harbor Workshop . 
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Fig. 15.7 

Top, Intensity relations can affect the ability to see depth from stereo. 
In a monocular view, the light rectan gular ring is invariably seen in 

front of the darker ring. If disparit y cues are used to force the dark 
ring in front (seen by fusing the two right hand panels with crossed 
eyes, or the left two with uncro ssed), one either sees rivalry or the 
rectangles marking the intersections as opaque. For some observers, 
the transparency information overrides the disparity information . The 
effect is not as easily seen in the bottom panel, in part due to the 
observation that the depth relation between the surfaces is more 
ambiguous in the monocular view. 

Another example of how perceived depth affects attri ­
bute attachment is seen in figure 15.8 . In the top panel, 
the central rectangle is easily seen as transparent. The 
same luminance values when arranged so that they appear 
to derive from a folded card give rise to an alternative 
interpretation in the second panel from the top . Here, all 
the edges seem to be reflectance edges, except for the 
central vertical edge, which now appears to be due to a 
change in orientation. Note too how the apparent con­
trast of the two central regions differs in the two top 
panels. The apparent contrast is much less for the folded 
than for the flat card. This is another example of how the 
estimation of one scene attribute affects the perception of 
another. The bottom two panel s show that if the X cross­
ings are changed to t/1 crossin gs, the central "book like" 
smaller patches can appear to be either behind transparent 
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larger rectangles , or as an opaque book coming out from 
the page. 

Computation of Transparency 

In this section, we will look at the computational pro­
blems involved in computing the simplest transparency 
case-multiplicative combination of just two piece-wise 
constant components. The goal is to understand compu­
tational requirements for estimating the opaque and trans­
parent factors from a single image. It has been argued 
previously that the Bayesian approach to computing 
scene descriptions from images provides a quantitative 
"computational theory" (Kersten, 198 7; Marroquin , 1985). 
The Bayesian estimator can be thought of as an "Ideal 
Image Understander." It is an extension of the Ideal Ob­
server for detection and discrimination used in early vi­
sion (Geisler, 1989) to scene estimation. The Ideal Image 
Understander makes optimal use of both hard constraints 
on image formation and soft constraints on the prior 
likelihoods of scene characteristics. 

Bayesian estimation requires three steps: One must 
specify (1) the posterior (or a posteriori) probability of a 
scene representation conditional on the image data, (2) a 
statisti c representing what one would like to estimate 
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Fig. 15 .8 
In th e top pan el, the cent ral rect angle can be seen as tran sparent . The 
same lum inan ce values when arrange d so that they appear to derive 
&om a fo lded card gi ve rise to an alte rnative interpretation in the 
second pan el. He re, all th e edges app ear as reflectance edges , except 
for the central vertical edge, w hich now appears to be due to a 
chan ge in o rientation . This is anoth er examp le of how the estimation 
of one scene attribu te affect s the perception of anot her, ther eby 
affectin g th e edge labeling . The third and fourth pan els sho w that the 
result is not simpl y a matt er of changing the X to ,J, crossings. The 
central patches can be seen as goi ng behind larg er transparent 
rectan g les, or as op en op aque books . · 

(e.g ., mode or mean ) on this distribution, and (3) an algo­
rithm to find this estimate . The po sterior probability hmc­
tion embodies statistical knowled ge about the world , and 
the model of how the imag e was caused . The model will 
tell us how probable any particular solution is. In particu­
lar, it should give low values to those scene interpreta ­
tion s we never see and high and similar value s to the 
(possibl y multiple) perceptual interpretation s we do see. 
In our case, we want to find probable scenes , that is, 
opaque and transparent components , conditional on the 
image luminance . Below , the larg est mode or peak of the 
posterior distribution is estimated . This is called maximum 
a posteriori or MAP estimation . MAP estimat ion is opti ­
mal in the sense that it min imizes the probability of error . 
The Ideal Image Und erstander developed below is defined 

to be a MAP estimator of a scene representation condi­
tional on the image. 

What is an Ideal Image Understander good for? In 
general , questions of optimality have to take into account 
functional goals of the animal or machine , biological or 
hardware constraints, and processing time. The Ideal 
Image Understander is only limited by the uncertainty in 
the information provided and by the simple goal of mini­
mizing classification error without regard for time. It pro­
vides an upper bound on the estimation performance of 
obs ervers or algorithms attempting to achieve the same 
goal. The Ideal Image Understander makes the useful 
distinction between the statistical model and the algorithm. 
The statistical model is a quantitative statement of the 
constraints and goal of the computation (parts 1 and 2). In 
principle, the statistical model can be evaluated as to 
wh ether it is right or wrong independent of the specifics 
of the algorithm. The algorithm is the particular technique 
used to compute the answer based on the model. There 
are, in general, many algorithms that can find the MAP 
estimate for a given problem . But there are countless 
oth er algorithms that are suboptimal in the sense that 
their prob ability of error is higher. In principle one could 
make algorithm -independent predictions regarding what 
are the likely human interpretations of a scene given 
image data . Modes of the posterior probability should 
correspond to stable perceptual states . If they do not, 
then either the brain's algorithm does not locate these 
modes , or its perceptual model of the scene properties is 
different from the ideal 's statistical model. 

The first step of specifying the posterior probability 
is handled more conveniently if Bayes' rule is used to 
split the probability into two parts: p(image I s~ene) repre­
sents the image formation constraint discussed above, and 
p(scene) specifies the prior (or a priori) conditions on the 
scene parameter s that we would like to estimate. Scene 
and image can be thought of as two very long vectors 
with the parameters describing a potential scene and its 
image. The posterior probability is 

( I 
. ) p(image I scene)p(scene) 

p scene image = ---------. 
p(image) 

The probability also depends on p(image), but this is con­
stant for a given image. One can think of the prior prob­
ability model as a procedure that draws sample scene 
descriptions with the likelihoods specified by the model. 
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In principle, one could independently try to verify the 
prior model based on a sample population drawn from the 
real world. In practice, this may be difficult. Statistical 
models of scene parameters from real-world data have 
been sought in only a few cases (e.g., spectral reflectances, 
Maloney & Wandell, 1986). Suitable mathematical model­
ing tools are needed to specify the prior model. Markov 
random fields (MRFs) provide one such tool for specify­
ing prior probabilities of scene parameters represented on 
a spatial lattice. One of the strengths (and limitations) of 
MRFs is that they are defined in terms of local, and 
thus manageable constraints. An MRF is defined in terms 
of local conditional probabilities on neighborhoods. A 
neighborhood, ~. of a site i, is a set of sites not contain­
ing the point itself and, further, if the point i is a member 
of some neighborhood ~. j must be in the neighborhood 
of i. An MRF is defined by the rules that (1) the probability 
of any field (e.g., reflectance map) is positive, and (2) the 
probability of a site value (e.g., reflectance) conditional on 
all the other values is equal to the probability conditional 
on only those values in its neighborhood. Bayesian esti­
mation on MRFs provides a general statistical framework 
for regularization (Poggio, Torre & Koch, 1985). Many 
neural net algorithms are doing MAP estimation over 
MRFs (Golden, 1988). Their limitations are essentially 
those of regular grammars (Miller , Roysam , Smith & 

Udding, 1990). 
The posterior probability, over an MRF, can be ex­

pressed in terms of an energy or cost function EG : 

p(scene I image) oc e-Ea !T, 

where the energy, EG, is the sum of terms corresponding 
to the prior and image constraints (Besag, 1972) . The 
energy is the sum of small local interactions or potentials. 
Finding modes is equivalent to finding minima of EG. The 
T, or temperature, parameter is useful in some applica­
tions for expanding and compressing the distribution in a 
search for modes. 

Consider the following energy function for splitting an 
image into just two components, a transparent and an 
opaque part: 

EG = V1(1, 11) + VR(R, JR) 

+ A.1 VL(L, R, I) + l 2 VE(JL, JR, 11, J0). 

The first two energy terms capture prior statistical as­
sumptions about the cohesiveness of like matter, and in-
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elude specific terms to constrain contour binding . Only 
the second two terms depend on the data. The energies 
can be summed because the probabilities, expressed as 
exponentials, are independent, and thus multiply. VR and 
V1 represent energies for the prior statistical models of the 
opaque R and transparent I vectors, respectively. The 
opaque and transparent vectors contain the reflectance 
and the transmittance of the corresponding components . 
JR and 11 represent line processes and are binary vectors 
representing the discontinuities in the opaque and trans­
parent factors (Ceman & Ceman, 1984). In the imple­
mentation below, horizontal and vertical line processes 
are placed between vertical and horizontal pixel pairs, 
respectively. A value of one indicates the presence of a 
line, and zero its absence . Knowing VR means that we can 
assign a global probability to any sample two-dimen­
sional opaque map in our model. 

VL represents the luminance or image constraint. The 
image luminance vector, L is a function of R and I. Each 
luminance value is determined by the point wise applica­
tion of the image formation equation. Minimizing VL en­
courages the estimate of the image, which is in tum a 
function of the estimates of the transparent and opaque 
components, to agree with the measured image data. The 
exponential of its negative is proportional to the prob­
ability of a given image conditional on a scene vector. VE 
is an edge data constraint that allows conditional probabi­
lities relating scene discontinuities to image discontinui­
ties (Poggio et al., 1988), and cooperatively couples scene 
discontinuity estimates from other modules, such as depth. 
J L and IO are line process vectors marking image and 
depth continuities. 

A.1 controls the weight given to the multiplicative 
image constraint. If .-1.1 = 0, then the product of opaque 
and transparent components does not have to equal the 
image luminance to produce a low energy. The noise 
level in the imaging process determines .-1.1 . In the simula­
tions, it is assumed that there is no imaging noise, and .-1.1 

is used for constraint relaxation, and as such it is not a. free 
parameter, but starts small and tends to infinity . .-1.2 con­
trols the weight given to the interaction between the 
discontinuities. In the simulations, it is set to either one or 
zero, depending on whether the constraint is used or not. 

Let us return to the modeling of the prior terms, VR and 
V1 • The opaque component is modeled in terms of local 
conditional probabilities of reflectance values and the in­
visible line processes between them. Recall that by the 
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definition of an MRF, the conditional probability of a 
reflectance value, R; at site i depends only on the values, 
Ri, of its neighbors, where j is a site in the neighborhood 
of i. A neighborhood system where each site i has as its 
neighbors the four nearest pixels is shown in figure 15.9. 

In particular, the dumpiness of "like matter" would re­
quire the central reflectance to have a value near its neigh­
bors. The neighborhood can be broken if a discontinuity, 
marked by a line process being on, exists between two 
sites. In simulations, the neighborhood consisted of the 
four nearest neighbors when there are no line processes 
turned on. 

The prior energy term for the reflectance is determined 
by the sum of local potentials which are in tum de­
termined by the local conditional probabilities 

VR(R , IR) = L VR(R;,R)(l - IC)+ L ½RUG,lfi). 
i ,jEN ; C 1 

LG represents the binary line process between pixels i and 
j . If equal to one, it knocks out the contribution of the j th 
neighbor. N; is the four nearest neighbors of i. In general, 
a global prior potential is determined by summing local 
energies for each clique. A clique, C, is a single site or a set 
of sites such that each member is a neighbor of the others. 
For the four nearest neighborhood system, cliques are 
either single sites, or nearest vertical or horizontal pairs. 

Fig . 15.9 
Sit e i in a M arko v random field. Hs four neighbors are shown shaded 
and make up th e ne ighborhood N;. A smoothnes s constraint assumes 
that the probabil ity o f the value, Ri, conditional on the four nearest 
neighbor s is higher when it is close to the value s of its neighbor s. An 
example of a clique is the pair of sites i and j . 

2 . Another example of a local po tent ial is a "smo othed Ising potential " 
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The first sum above is over pairwise cliques . The second 
sum represents the cost of various contour arrangements. 
The cliques for line processes (C1), are slightly more com­
plicated than those for the field (i.e., reflectance or trans­
mittance) values and are discussed below. 

The form of the prior potential is based on heuristic 
judgement. One convenient form is the quadratic po­
tential which encourages smoothness by giving increas­
ingly low probabilities to large differences of reflectance 
between neighbors 2

: 

VR(R;, Rj) = (R; - R) 2 i<I2
. 

For the simulations, the transparency problem is ap­
proximately symmetric in both image formation and 
priors, so the transparent component is similar to the 
opaque reflectance term 

V,(I, I')= L 
i,j e Ni 

V1 (t t) is also a quadratic potential which, together with 
the line processes, captures the piecewise smooth char­
acteristic of transparent overlays. In the simulations, a = 
1 for both reflectan ce and transmittance potentials. 

The line processes represent physical discontinuities in 
the reflectance (or transparency) function and break the 
neighborhood determining the local potential as one goes 
from one type of clump to another. Line processes are 
also modeled as MRFs. In the simulations here, there are 
only vertical lines and horizontal lines . Each line has six 
neighbors . Each line site has a neighborhood structure 
that enables one to characterize the probabilities of var­
ious contour configurations in terms of just local interac­
tions (figure 15.10). For example, two lines of the same 
orientation are more likely than ones at right angles. One 
can discourage "T' junctions for transparencies, but not 
for opaque functions, and so forth . For the clique cases: no 
lines, a collinear pair, one line, a pair at right angles, three 
lines and four lines, the values of the potential, v,., used 
for the reflectance line processes were determined from 
configuration energies: 0.0, 0.0, 2.0, 1.8, 1.8, and 2.0 re­
spectively. The values for the configuration energies of 
the transmittances, ½, were: 0.0, 0.0, 3.0, 1.8, 3.7, 3.7. The 

which , like the quadratic potential, gives high probabilities to similar intensities, 
but on the other hand , gives nonvanishing probabilities to very large differ­
ences in intensity between two neighboring reflectances. It encourages piece­
wise con stant pattern s even without line processes . 
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The line processes represent physical discontinuitie s in the modeled 
surface property. They have binary value s and , wh en turn ed on, 

mark the break in the neighborhood as one goes from one value of 
surface property to another . Line processes are modeled as Markov 
random fields with their own prior probab ility stru cture. The bottom 

of the figure shows decreasingly likely configur ation s as one goes 
from left (no lines) to right (an isolated line ). 
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Fig. 15.11 

Examples of hypothetical one-dimensional energy functions that are 

inversely related to some corresponding posterior probability . The 
horizontal axis indexes the scene attribute map under consideration. 

Top, A convex energy function . Gradient or other descent methods 
could find the bottom and thus the most likely scene interpretation. 
Bottom, An example with local minima . Each minimum represents 
either one of several stable perceptual interpretations, or states that 
may never be "seen" by our hypothetical visual system if the 
particular algorithm chosen never settles there . 

exact values are not critical. The relative weighting is 
more important. The additional energy for three and four 
line configurations penalized this sorl of junction more 
heavily for the transparent than for the opaque surface 
and provided the only asymmetry in the simulations de­
scribed below. 

An additional advantage of making the scene disconti­
nuities explicit is that one can model the interactions 
between image and scene discontinuities expressed in VE. 
Image edges can be coupled to the scene discontinuity 
estimates and to each other. Shadow edges are transpar­
ent and intersect with each other less frequently than 
occlusion edges. Edges due to shadows or transparency 
rarely coincide with the other types of discontinuity. On 
the other hand, edges due to occlusion often coincide 
with reflectance or texture change. Weights given to 
these constraints can be embodied in VE (see tables 15.1 

and 15 .2). 
For multiplicative transparency , the following image 

formation energy function enforces the constraint that the 
image be the product of the estimates of the opaque and 
transparent parts 

VL(L, R, I)= L (Li - RJY. 
i 

It is straightforward to put in alternative image formation 
constraints. 

At this point , one could pause ~d ask whether the 
statistical model is any good in the sense that if one 
plugged in answers, inferred from human perception stu­
dies, would these answers be at the global energy mini­
mum? Although one could plug in the solutions that some 
observer has produced, the remaining problem is to com­
pare these probabilities (or energies) with the Ideal Image 
Understander's. Unfortunately , it is not always clear when 
one is at the global minimum. Just because we have an 
energy function does not mean we understand how to 
solve the problem (Yuille, 1987). An algorithm is required 
to find minima . 

The Algorithm and Results 

To get an intuitive understanding for the nature of the 
algorithmic problem , figure 15.11 shows hypothetical 
one-dimensional energy functions to illustrate the kind of 
problems one encounters when seeking a global mini­
mum. If lucky, the energy function would be like the top 
panel of figure 15.11, that is, convex. Gradient or other 
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descent methods could get one to the bottom and thus to 
the most likely scene interpretation. For the transparency 
problem as formulated here, we have a problem some­
what akin to trying to find the bottom of the curve in the 
lower panel of figure 15.11, in which there are multiple 
minima. On the one hand, we do not want to eliminate 
multiple minima, which are required to represent multi­
stable perceptions; on the other hand, there may be nu­
merous false solutions that are never seen . Two possible 
approaches are either to try new representations that do 
not lead to craggy energy functions, or to find brute force 
algorithmic techniques that work with the existing sta­
tistical model. The easier, but less satisfactory , brute force 
approach will be taken here . The positive lesson will be 
an understanding of the limitation of local algorithms to 
deal with a local statistical model. There are several tricks 
that can be used to search for both global minima, and 
ones close to it. 

Gibbs Sampler with Gradient Descent and Image Edge 
Constraint 

The Gibbs Sampler was originally developed by Ceman 
and Geman (1981). Initially, all the scene estimates are 
chosen at random. The idea is to draw a sample from the 
local conditional posterior probability (calculated from 
the global posterior distribution) at a randomly chosen 
site. The local probabilities at site i depend on the image 
intensity , reflectance, and transmittance at that location 
and the neighborhood values of the reflectance and trans­
mittance. The sampled values of reflectance and transmit­
tance replace the previous values. The order in which the 
sites are visited does not matter as long as each one is 
visited "often enough." In the simulation results shown 
below, the pixels were visited in a raster order. Figure 
15 .12 illustrates the local sampling part of the algorithm. 
If the sampling is done with temperature set to zero, the 
procedure corresponds to gradient descent on the energy 
function. Zero temperature compresses the distribution 
around a single point approaching the mode. Figure 15.13 
illustrates some results using gradient descent . The top 
panel of figure 15.13A represents the input data (thick­
ened lines indicate image edge markings). The bottom left 
and right panels are the initially randomized representa­
tions of the opaque reflectance, and transmittance respec­
tively . The thick gray lines between square pixels indicate 
line processes that are turned on. Figure 15.13B shows 
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Gibbs Sampler 

[Reflectance neighbors ],------...., 
Reflectance Transparency 

Reflectance 
values for 

opaque map 

Fig. 15.12 

edge neighbors edge neighbors 

lma~e 
intensities 

Transmittance 
values for 

transparent map 

Sample to get reflectance. 
transmittance and fine 

values al site I 

Neighborhood values 
and image intensities 

determine "hat'" 

The Gibbs sampling proc edure used in the simulations to estimate 
reflectance and transmittance maps from the data. The opaque and 
transparent maps are initialized with random values. A site is then 
selected, a sample is drawn from an appropriate "hat," and used to 
replace the prev ious value. Each site is visited in a raster fashion 
(random asynchronous updating can be used). In general , the 
algorithm gradually converges to a stable state representing the 
estimate of reflectance and transmittance consistent with the image 
intensities . See the text for more details . 

how gradient descent quickly leads to a local energy 
minimum satisfying the image formation constraint. In 
this example, .:l2 = O; that is, there is no image edge 
constraint. 

One problem with this solution is that lines show up in 
the solution that do not have support from lines in the 
image. Intensity changes in the image can usefully con­
strain the search for opaque and transparency edges. If 
there is an edge in the image, this increases the likelihood 
that there is either an edge in the opaque component, or 
one in the transparent component. Further, it is unlikely 
that both types of edge coexist at a site. The potential for 
this constraint is 

V E(IL, JR, I')= L VE(IL, /R, /1). 

Table 15.1 shows values used for VE. Figure 15.13( 
shows the local minimum arrived at using gradient des­
cent with this image edge data potential. Although com­
ing closer to being reasonable, the solution is cle~rly 
unsatisfactory as a perceptual interpretation. The solution 
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Table 15.1 

Fig. 15.13 
Each of the three panels consists of a triad . The picture at the top of 
each triad represents the input image data. The original input picture 

was 12 by 12 pixels, with 64 possible graylevels. The reflectance and 
transmittance scene maps had 8 levels each. Thick gray lines indicate · 

line processes that are turned on. The bottom left and right pictures 
of each triad indicate the current estimate of reflectance and 
transmittance , respectively . (A) The starting configuration for a 
simulation. (B) The local minimum after 24 iterations of gradient 
descent. One iteration is completed after all sites have been visited 

once . (C) A local minimum after 20 iterations, but here scene edges 
are constrained to have support in the image edges and to not 
overlap . 

Values of the edge potential (inversely related to probability ) for 

again corresponds to a perceptual interpretation that is 
never seen. Because the input image was constructed by 
multiplying a known reflectance and a known transmit ­
tance, the correct answer is known , and the energy can be 
calculated. Note that this correct answer may not ne­
cessarily correspond to the global minimum of the pos­
terior probability. If the statistical model is wrong , then 
the global minimum of the posterior probability does not 
correspond to the correct answer. So even a "perfect" 
algorithm, such as one capable of an exhaustive search, 
would find the wrong answer. The energy for the two 
solutions shown so far is much higher than the correct 
energy . If the statistical model is correct, this would in­
dicate a local minimum. Additional techniques are needed 
to avoid monotonic descent of the energy landscape. 

various configurations of edge labels 

Image Reflectance Transmittance 
edge edge edge 

0 0 

I 0 

0 I 

I I I 

0 0 0 

0 I 0 

0 0 I 

0 I I 

Note: High energies are assigned to unlikely combinations. 

Potential 
VE 

I 

0 

0 

I 

0 

1 

I 

I 

Bag of Tricks Search 

Even for simple transparencies , reasonable solutions in a 
few iterations have only been obtained by using a combi­
nation of techniques to avoid local minima. These tricks 
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include image edge data (from above) , simulated anneal­
ing, constraint relaxation, and neighborhood relaxation . 
The power of each of these techniques was evaluated 
separately , and none of them provided consistent solu­
tions to the simple transparency shown in the top panel 
of figure 15.13. The best solutions were obtained when aU 
four techniques are combined into a "bag of tricks ." In 
simulat ed annealing, the temperature parameter , T, is ini­
tially set high . For high temperatures, the Gibbs sampler 
samples from a local distribution with a large variance . 
This means that sometimes parameters of the scene 
estimate are chosen that are locally unlikely , but allow 
escapes from local energy minima. The temperature is 
gradually lowered until one is doing strict descent on the 
energy function. In theory , a sufficiently gradual anneal­
ing schedule is guaranteed to find the global minimum , 
but in practice it is too slow (Geman & Geman , 1984). In 
constraint relaxa tion, one starts off with small values of A.1 , 

initially ignoring the image form ation constraint to find 
independent samples of opaque and transparent compo­
nents . This helps to lower extremely high barr iers in the 
energy function caused by hard constr aint s. ,l 1 is gradu ­
ally raised until the data constr aint ev entuall y dominates 
the energy function . 

The principal difficulty is trying to find a global mini­
mum with only local propagation of constraints. The local 
conditional prior probabilities may in fact be the right 
ones , from the point of view of the statistical model, but 
the algorithm is bad because it fails to propagate these 
]~cal constraints over a wide region, especially with the 
multiplicity of local minima in the transparency problem. 
One empirical trick devised for this problem is neighborhood 
relaxation to initially construct the conditional probability 
for the Gibbs sampler using an expanded neighborhood . 
In these simulations, the same number of neighbors are 
maintained (i.e., four field neighbors and six line neigh ­
bors), but in the first iterations they are at distant points . 
As the iterations proceed, the neighborhood size is con­
tracted. Neighborhood relaxation sketches in a global 

3 . The constraint relaxa tion schedule was: 

.<1 = log (2 + i)IA 0 , 

and the annealing schedule was: 

solution, and then fine tunes it. It is in the spirit of coarse 
to fine multigrid techniques (Terzopoulos , 1984). 

Figure 15.14 shows results using the Bag of Tricks des­
cent. 3 Part A shows an intermediate stage in the con­
vergence in which the distance between neighbors is two 
rather than one pixel. Part B shows a solution correspond­
ing to a common perceptual interpretation-a square 
transparent film overlaying two opaque rectangles . A less 
common interpretation is to see the pattern as it is-all 
the edges are reflectance changes, and there is no trans­
parency . The algorithm also finds this solution , shown in 
part C. With different random starting configurations and 
the parameters chosen, the algorithm finds four major 
interpretations. In addition to the two shown , it also 
tends to converge to the symmetric solutions, namely, in 
which all the edges are transmittance changes, or where 
only the central square is a transparent surface. 

Even the bag of tricks does not work well for more 
complicated transparencies such as the one shown in 
figure 15.15. After many iterations (figure 15.15B), the 
descent has traveled down a slope distant to any reason­
able perceptual interpretation . One , however , can achieve 
reasonable solutions by incorporating additional sources 
of depth information. For example , if an independent 
stereo process has labeled the edges simply according to 
whether they are at the same depth plane or not, an 
improved solution is obtained. This constraint is incor­
porated into a potential term 

V E(l\IR,I' , ID) = L VE(IL,/R,Jl , /D)_ 

Table 15.2 shows values of VE used in the simulations. 
Figure 15.15C shows results (after 818 iterations) using 
the Bag of Tricks with an additional depth constraint. The 
added complexity of a depth constraint may seem pre­
mature in that we can see the transparent plane in a 
monocular view, even if the model has difficulty. Eventu­
ally, stereo information has to be incorporated into mod­
els of transparency, even when X junctions are visible. 
Figure 15.16 shows a stereo pair of many overlapping 

T = T0 / log (2 + i ), 

where i is the iteraction numb er. Typical values of .<0 and T0 were 2 and 4. The 
neighb orhoo d relaxa tion started off at a diameter of 12 pixels, and was reduced 
by one after every four iteration s. 
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Fig. 15.14 
The results of a simulation combining image edge data constraint , an 

annealing schedule, constraint relaxation , and neighborhood 
relaxation. (A) The progress of the simulation after 18 iterations . The 
checkerboard appearance is a consequence of the neighborhood 
relaxation. Convergence to reasonable solutions is fairly rapid, 20 and 
23 iterations for (B), and (C), respectively. Other details are as for 
figure 15.13. 

,. a 
Fig. 15 .15 

(A) The starting configuration for a more complicated transparency 
problem. The transparent surface is a square as in the previous 

example, but the opaque background is Mondrian -like. (B) Results 
using the "bag of tricks" after 54 iterations. This simulation never 
recovered after over 1000 iterations steering down a valley distant 

from anything remotely resembling what we perceive. A considerable 
improvement obtains when in addition to the bag of tricks, an edge 
constraint (see table 15.2) is used to group line elements that are in 
the same depth . (C) The state of the convergence after 818 iterations . 
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Table 15.2 
Values of the edge potential when depth labels are assigned to line 
locations 

lmage Reflectance Transmit - Depth Potential 
edge edge tance edge index VE 

1 0 0 0 1 

1 1 0 0 0 

1 0 1 0 0 

1 1 0 1 

0 0 0 0 0 

0 1 0 0 1 

0 0 I 0 1 

0 1 l 0 l 

l 0 0 l 1 
1 1 0 l 0 

l 0 1 1 0 

l l l l 0 

0 0 0 l 

0 1 0 1 1 

0 0 1 1 1 

0 l 1 l 

Note: The depth index serves solely to indicate that line segments are 
at the same depth plane and not their relative depth. 

Fig. 15.16 
A stereo pair of many overlapping rectangles, some of which are 
transparent and some opaque. The transparency of many of the 
rectangles is only apparent when viewed stereoscopically, despite the 
visibility of X junctions. 

rectangles. The observation that some rectangular patches 
are transparent is only apparent in the stereo view. 

Summary 

Several new perceptual observations were made that the­
ories of transparency must ultimately have to deal with. 
The central argument is that perceived transparency is 
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determined by the cooperative computation of distinct 
scene attributes including depth from stereo, motion or 
perspective, and the opacity of the surfaces behind. One 
piece of evidence is the multistability of the perception of 
the attachment of opacity and transparency attributes to 
surfaces. A second line of evidence is that not only does 
the perception of depth affect the perception of transpar­
ency, but that perceived transparency can affect depth. 
The fact that an X junction is neither necessary nor suffi­
cient for the perception of transparency indicates the 
importance of global computation (depth from stereo is 
sufficient for the perception of transparency in the absence 
of X crossings). The prior statistics of the contour shape 
have a strong affect on the attachment of surface attri­
butes and is explicitly represented in the computation. 

The computation section outlined a simplified Ideal 
Image Understander or Bayesian approach to computing 
surface transparency. The model was simplified in that it 
only dealt with multiplicative transparency of flat Mon­
drian-like surfaces. It was pointed out that a major strength 
of the Bayesian approach is the separation of the statisti­
cal model from the algorithm. Markov random fields pro­
vide tools for the statistical modeling of scene attributes 
that may be useful in the long term. However, because the 
posterior energy landscape for transparency is extremely 
rugged when set up in terms of local constraints, local 
algorithms based on Gibbs sampling may be less useful 
for computing perceptual models from images-that is, 
for finding modes of the posterior distribution. Neighbor­
hood relaxation was one new useful technique that helped 
to overcome this limitation. Incorporating information 
on depth relations between edges, derived from other 
sources (e.g., stereo) was another trick that improved 
the search for modes. There remains a big discrepancy 
between the Bag of Tricks descent used and human 
computation of transparency . This gap is left for future 
research to resolve. 
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